Background: The ideal maxillofacial prosthesis should have fine and thin boundaries that bindwith the surrounding facial structures and possess high tear strength.This study aims to determinethe best percentages of nanofiller (TiO2) and intrinsic pigment (silicone functional intrinsic) thatcould be mixed in as additives to improve the tear strength of Cosmesil M511 andVST50F siliconeelastomers with the least effect on their hardness.Materials and Methods: In this in vitro experimental study, a total of 80 samples, 40 for eachelastomer, were fabricated. Each elastomer sample was split into two equal groups to test for tearstrength and Shore A hardness. Each group consisted of 20 samples, including 10 control sampleswithout additives and 10 experimental samples with additives (mixtures of 0.2 wt% nano‑TiO2 + 0.25wt% intrinsic pigment and 0.25 wt% nano‑TiO2 + 0.25 wt% intrinsic pigment for the CosmesilM511 and VST50F silicone elastomers, respectively).Two‑way ANOVA and Tukey test were usedfor comparison; P < 0.05 was considered statistically significant.Results: Significant differences in tear strength were found among all tested groups (P < 0.05).The tear strength of the experimental subgroups significantly increased compared with the controlsubgroups (P < 0.05). Significant differences in Shore A hardness were also observed among alltested groups (P < 0.05) except between the experimental subgroups of both materials, where anonsignificant difference was obtained (P > 0.05).Conclusion: Incorporation of select percentages of TiO2 nanofiller and intrinsic pigment intoCosmesil M511 andVST50F silicone elastomers yields improvements in tear strength with a slightincrease in hardness (PDF) Impact of a mixture of nanofiller and intrinsic pigment on tear strength and hardness of two types of maxillofacial silicone elastomers. Available from: https://www.researchgate.net/publication/343647971_Impact_of_a_mixture_of_nanofiller_and_intrinsic_pigment_on_tear_strength_and_hardness_of_two_types_of_maxillofacial_silicone_elastomers [accessed Apr 05 2023].
Flow of water under concrete dams generates uplift pressure under the dam, which may cause the dam to function improperly, in addition to the exit gradient that may cause piping if exceeded a safe value. Cutoff walls usually used to minimize the effect of flow under dams. It is required to
1)minimize the flow quantity to conserve water in the reservoir, it is also required to
2)minimize the uplift pressure under the dam to maintain stability of the dam, and it is required to
3) minimize the exit gradient to prevent quick condition to occur at the toe of the dam where piping may occur and may cause erosion of the soil. Varying the angle of cutoff walls affects its influence on the factors aforementioned that are required to
... Show MoreIn this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups
... Show MoreThe ability of microorganisms to attach to living and non-living surfaces and create a biofilm is the cause of numerous long-lasting illnesses, as well as their strong resistance to drugs. Bacterial biofilms consist of intricate assemblies of immobile bacteria. These are located in an extracellular matrix and adhere to various surfaces for a long period. The present study evaluated the antibacterial effectiveness of Plantago major extract against Staphylococcus aureus biofilm. The specimens analyzed in this investigation were skin infections of clinical origin. The current study was not previously studied, particularly in terms of S. aureus biofilm breakdown and inhibition. The disc diffusion method was used to test the antimicrobial activi
... Show MoreThe ability of microorganisms to attach to living and non-living surfaces and create a biofilm is the cause of numerous long-lasting illnesses, as well as their strong resistance to drugs. Bacterial biofilms consist of intricate assemblies of immobile bacteria. These are located in an extracellular matrix and adhere to various surfaces for a long period. The present study evaluated the antibacterial effectiveness of Plantago major extract against Staphylococcus aureus biofilm. The specimens analyzed in this investigation were skin infections of clinical origin. The current study was not previously studied, particularly in terms of S. aureus biofilm breakdown and inhibition. The disc diffusion method was used to test the antimicrobial activi
... Show MoreThe aim of this work is to study the factors that affect the welding joint of dissimilar metals. Austenitic stainless steel-type AISI (316L) with a thickness of (2mm) was welded to carbon steel (1mm) using an MIG spot welding. The filler metal is a welding wire of the type E80S-G (according to AWS) is used with (1.2mm) diameter and CO2 is used as shielding gas with flow rate (7L/min) for all times was used in this work.
The results indicate that the increase of the welding current tends to increase the size of spot weld, and also increases the sheer force. Whereas the sheer force increased inversely with the time of welding. Furthermore, the results indicate that i
... Show More