In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and the plasticity index of the soil.
In this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the s
... Show MoreRadio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show More
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show MoreCollaborative learning in class‐based teaching presents a challenge for a tutor to ensure every group and individual student has the best learning experience. We present Group Tagging, a web application that supports reflection on collaborative, group‐based classroom activities. Group Tagging provides students with an opportunity to record important moments within the class‐based group work and enables reflection on and promotion of professional skills such as communication, collaboration and critical thinking. After class, students use the tagged clips to create short videos showcasing their group work activities, which can later be reviewed by the teacher. We report on a deployment of Group Tagging in an undergraduate Computing Scie
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreSustainability including renewable energy and green power, is one of the important feature in recent years due to environmental constraints and the emission of CO2 from fossil fuel. Pressure retarded osmosis (PRO) process is considered one of the effective technology for power generation. This study assessed the application of pressure retarded osmosis to produce power from Tigris River water in Baghdad City, Iraq. Spiral wound TFC membrane was tested in the PRO process with different variables. The effect of different types of draw solutions (MgCl2, NaCl, Sodium Formate, KCl, Sodium Acetate), applied pressure (0 – 7 bar), and draw solution concentration (0.08 and 0.4 M) were tested in this work. The flux, recovery, and power density for
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreThe main focus of this research is to examine the Travelling Salesman Problem (TSP) and the methods used to solve this problem where this problem is considered as one of the combinatorial optimization problems which met wide publicity and attention from the researches for to it's simple formulation and important applications and engagement to the rest of combinatorial problems , which is based on finding the optimal path through known number of cities where the salesman visits each city only once before returning to the city of departure n this research , the benefits of( FMOLP) algorithm is employed as one of the best methods to solve the (TSP) problem and the application of the algorithm in conjun
... Show More