Preferred Language
Articles
/
QRbUX4cBVTCNdQwCDkiU
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.

Crossref
View Publication
Publication Date
Mon Dec 01 2014
Journal Name
Advances In Engineering Software
System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm
...Show More Authors

View Publication
Scopus (47)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Mon Apr 23 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Determination of Integrinα2 (ITGA2), Progesterone, Prolactin, Estradiol, Zinc and Vitamin C in Serum of Female Iraqi Patients with Breast Cancer
...Show More Authors

Back ground: Cancer is the second leading cause of death throughout the world. Breast cancer, is one of the leading mortality reasons in women from Western Countries, in Iraq, breast cancer is the second reason of death After cardiovascular Diseases.

Material and method:

The study was carried out of period from October/2016-january /2017 and  included (90) serum samples for Iraqi women suffered from breast cancer . Samples were divided into two groups ,the first group included (66) patients (females) their age rang (22-55) years which attended to (tumor unit) at medical city educational oncology hospital and Al-Amal Al-Waatanii hospital in Baghdad ,the second group included (38) for

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Agricultural And Statistical Sciences
A COMPARISON BETWEEN SOME HIERARCHICAL CLUSTERING TECHNIQUES
...Show More Authors

In this paper, some commonly used hierarchical cluster techniques have been compared. A comparison was made between the agglomerative hierarchical clustering technique and the k-means technique, which includes the k-mean technique, the variant K-means technique, and the bisecting K-means, although the hierarchical cluster technique is considered to be one of the best clustering methods. It has a limited usage due to the time complexity. The results, which are calculated based on the analysis of the characteristics of the cluster algorithms and the nature of the data, showed that the bisecting K-means technique is the best compared to the rest of the other methods used.

Preview PDF
Scopus (1)
Scopus
Publication Date
Wed Aug 30 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Dynamic Low Power Clustering Strategy in MWSN
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jul 01 2017
Journal Name
2017 Computing Conference
Protecting a sensitive dataset using a time based password in big data
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Mon Sep 03 2012
Journal Name
The International Archives Of The Photogrammetry, Remote Sensing And Spatial Information Sciences
CALIBRATION OF FULL-WAVEFORM ALS DATA BASED ON ROBUST INCIDENCE ANGLE ESTIMATION
...Show More Authors

Abstract. Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration r

... Show More
View Publication
Crossref
Publication Date
Wed May 09 2018
Journal Name
International Journal Of Advanced Computer Science And Applications
New Techniques to Enhance Data Deduplication using Content based-TTTD Chunking Algorithm
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Steganography and Cryptography Techniques Based Secure Data Transferring Through Public Network Channel
...Show More Authors

Attacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover.  The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Al-khwarizmi Engineering Journal
High Transaction Rates Performance Evaluation for Secure E-government Based on Private Blockchain Scheme
...Show More Authors

 

The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 22 2023
Journal Name
Mesopotamian Journal Of Big Data
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo

... Show More
View Publication
Crossref (15)
Crossref