The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the time and intensity of dynamic loads applied. On the other hand, the excess pore pressure increases with increasing the dynamic loads as well as it can be noticed that under the influence of each load the excess pore pressure increases with depth. At low dynamic load level, the liquefaction was not occurred (ru<1) while with high dynamic load, high produced vertical settlement causes that the liquefaction to be occurs (ru> 1). The zone of liquefaction below the foundation cap under dynamic load produce high vertical settlement and more than the permissible settlement without piles is about (0.7 B). The effect of an increase in the number of piles leads to decrease in the vertical settlement and the excess pore pressure decreases, the decrease becomes apparent when the number of piles increases to (8 piles) or more, as well the relationship is approximately linear between the excess pore pressure and effective stress The zone of liquefaction begins to decrease as the number of piles increases, when the number of piles are equal or more than (8 piles), the liquidation of soil has not occurs and the value of pore pressure ratio is becomes (ru<1). The pile foundation which produces vertical settlement more than the allowable settlement leads to mobilize the phenomenon of liquefaction to occur. A relationship to estimate the number of piles below the cap to prevent the liquefaction was obtained.
A new mixed ligand complexes were prepared by reaction of quinoline -2-carboxylic acid (L1) and 4,4?dimethyl-2,2?-bipyridyl (L2) with V(IV),Cr(III), Rh(III), Cd(II) and Pt(IV) ions. These complexes were isolated and characterized by (FT-IR) and (UV-Vis) spectroscopy, elemental analysis, flame atomic absorption technique, thermogravimetric analysis, in addition to magnetic susceptibility and conductivity measurements. Most complexes were mononuclear and with octahedral geometry, except Cd (II) with tetrahedral geometry, and V (IV) with square pyramidal geometry. A theoretical treatment of the ligands and the prepared complexes in gas phase was done using two programs Hyperchem.8 and Gaussian program (GaussView Currently Available Versions (
... Show MoreEight new complexes with the general formula [M(L)2(H2O)2] were prepared resulting from the reaction of the new Schiff base ligand [(E)-5- ((2-hydroxybenzylidene)amino)-2-phenyl-2,4-dihydro-3H-pyrazol-3- one(L)] with metal ions [manganese, cadmium, zinc, copper, nickel, cobalt, Mercury Bivalent and tetravalent platinum. This ligand was derived from the reaction of the amine (5-amino-2-phenyl-2,4-dihydro3H-pyrazol-3-one) with Salicylaldehyde, which is linked to the metal ions via two atoms. The nitrogen is the isomethene group, and the oxygen is the hydroxide group of the pyrazoline ring. The prepared compounds were characterized using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and ultraviolet spectroscopy, and from the
... Show MoreThe special core analysis tests were accomplished on a set of core plugs for Mishrif Formation (mA, mB1, and mB2cde/mC units) in West Qurna/1 oilfield, southern Iraq. Oil relative permeability (Kro) data and the Corey-type fit of the data as functions of the brine saturation at the core outlet face for individual samples in the water-oil imbibition process to estimate relative permeability measurements by the centrifuge method were utilized. Identical correlations for oil and water relative permeabilities were extracted by steady-state and unsteady-state methods. For the mA samples, the gas-water capillary pressure curves were within a narrow range (almost identical) indicating that mA is a homogeneous unit. Kro curves for three mB2
... Show MoreThe current study was to examine the reliability and effectiveness of using most abundant, inexpensive waste in the form of scrap raw zero valent aluminum ZVAI and zero valent iron ZVI for the capture, retard, and removal of one of the most serious and hazardous heavy metals cadmium dissolved in water. Batch tests were conducted to examine contact time (0-250) min, sorbent dose (0.25-1 g ZVAI/100 mL and 2-8 g ZVI/100 mL), initial pH (3-6), pollutant concentration of 50mg/L initially, and speed of agitation (0-250) rpm . Maximum contaminant removal efficiency corresponding to (90 %) for cadmium at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed wer
... Show MoreThis work presents a completely new develop an analyzer, named NAG-5SX1-1D-SSP, that is simple, accurate, reproducible, and affordable for the determination of cefotaxime sodium (CFS) in both pure and pharmaceutical drugs. The analyzer was designed according to flow injection analysis, and conducted to turbidimetric measurements. Ammonium cerium nitrate was utilized as a precipitating agent. After optimizing the conditions, the analysis system exhibited a linear range of 0.008-27 mmol. L-1 (n=29), with a limit of detection of 439.3 ng/sample, a limit of quantification of 0.4805 mg/sample, and a correlation coefficient of 0.9988. The repeatability of the responses was assessed by performing six successive injections of CFS at concentra
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2- hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11) . All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe (II), Co (II)
... Show MoreAnew Schiff base (NaHL) has been prepared from the reaction between the salt of amino acid glycine with 2-hydroxy naphthaldehyde. By tridentate Schiff base of (ONO), donors were characterized by using U.V and spectrophotometer techniques. Complexes of Co(II) Ni(II) Cu(II) and Zn(II) ion with the ligand have been prepared, these complexes were identified by infrared, electronic spectral data, elemental analysis, magnetic moments, and molar conductivity measurements. It is concluded from the elemental analysis that all the complexes have (1:2) [metal:ligand] molar ratios, octahedral, with the exception to Zn(II) complex which have (1:1)[metal:ligand] molar ratio.
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe
... Show More