Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes revealed that based on the Taguchi method, the first row of the heat transfer fluid tubes should be located at the lowest possible area while the other tubes should be spread consistently in the enclosure. The charging rate changed by 76% when varying the locations of the tubes in the enclosure to the optimum point. The development of streamlines and free-convection flow circulation was found to impact the system design significantly. The Taguchi method could efficiently assign the optimum design of the system with few simulations. Accordingly, this approach gives the impression of the future design of energy storage systems.
This survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing temperature on the structural, surface morphology, and optical properties of Ag2Se films, investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se films surface morphology was examined by AFM techniques; the investigation gave average diameter, surface roughness, and grain size mutation values with increasing annealing temperature
... Show MoreIn this article, the casting method was used to prepare poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) nanocomposite films incorporated with different contents (0.5, 1, and 1.5 wt%) of graphene nanoplatelets (Gnp). The chemical properties and surface morphology of the PMMA/HA blend and PMMA/HA/Gnp nanocomposite were characterized using FTIR, and SEM analysis. Besides, the thermal conductivity, dielectric and electrical properties at (1–107 Hz) of the PMMA/HA blend and PMMA/HA/Gnp composites were investigated. The structural analysis showed that the synthesized composites had a low agglomerated state, with multiple wrinkles of graphene flakes in the PMMA/HA blend. The thermal conductivity was improved by more than 35-fold its value for
... Show MoreThe aim of the current study is to create special norms of the second edition of Minnesota multi faces personality inventory, and the fifth edition of the sixteen personality factor questionnaire of catel. To this end, the researcher applied the Minnesota multi faces personality inventory over a sample of (1646) secondary and university students as well as plenty of disorders. She also applied the sixteen personality factor questionnaire of catel on (4700) secondary and university students. SPSS tools were used to process data.
Background: The polymethyl methacrylate is the most reliable material for the construction of complete and partial dentures, despite satisfying esthetic demand itsuffered from having unsatisfactory properties like impact strength and transverse strength. This study was designed to improve the impact strength and transverse strength of heat cure acrylic resin by adding untreated and oxygen plasma treated polypropylene fibers and investigate the effect of this additive on some properties of acrylic resin materials. Materials and methods: Untreated and oxygen plasma treated polypropylene fibers was added to PMMA powder by weight 2.5 %. Specimens were constructed and divided into 5 groups according to the using tests; each group was subdivided
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MoreBackground: this study aimed to evaluate the effect of addition of hydroxyapatite micro filler in three concentrations (5%, 10%, 15%) on surface roughness, impact strength, flexural strength and hardness. Material and methods: One hundred sixty acrylic samples were used in this study,40 samples were used for each test(impact strength ,flexural strength ,hardness and surface roughness).The test group divided into four subgroups(n=10) for controlgroup,5%,10% ,15%H,A.concentration addition groups .Impact testing device, flexural strength testing device, shore hardness tester and profilometer device were used to measure the four tests examined in this study. Results: the results showed a significant increase in impact strength, hardness in all
... Show MoreBackground: The purpose of this study was to compare regional bond strength at middle and cervical thirds of the root canal among glass fiber-reinforced composite (FRC) endodontic posts cemented with different cements, using the push-out test to compare the performance (retention) of two types of luting cements; polycarboxylate cement and Zinc phosphate cement used to cement translucent fiber post and to compare the result of the push-out test at different storage times;1 week ,1month and 2 months. Materials and methods: Ninety caries-free, recently extracted single-rooted human teeth with straight root canals was used in this study, The root canals were endodontically instrumented at a working length of 0.5 mm from the apex by m
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show More