This work investigates experimentally the effect of using a skirt with a square foundation of 100 mm width resting on dry gypseous soil (i.e., loose soil with 33% relative density), and subjected to an inclined load. Previous works did not study the use square skirted foundation rested on gypseous soil and subjected to inclined load. The investigated soil was brought from Tikrit city with 59% gypsum content. Standard physical and chemical tests on selected soil were carried out. Model laboratory tests were carried out to determine the effect of using a skirt with a square foundation on the load-settlement behavior of gypseous soil and subjected to inclined load with various Skirt depth (Ds) to foundation width (B) ratio
... Show MoreIn the present work a modification was made on three equations to represent the
experiment data which results for Iraqi petroleum and natural asphalt. The equations
have been developed for estimating the chemical composition and physical properties
of asphalt cement at different temperature and aging time. The standard deviations of
all equations were calculated.
The modified correlation related to the aging time and temperature with penetration
index and durability index of aged petroleum and natural asphalts were developed.
The first equation represents the relationship between the durability index with aging
time and temperature.
loge(DI)=a1+0.0123(2loge T
... Show MoreIn this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreRutting is a crucial element of the mechanical performance characteristics of asphalt mixtures, which was the primary target of this study. The task involved substituting various portions of virgin coarse aggregate with recycled concrete aggregate materials that had been treated or left untreated at rates ranging from 25 to 100%, with a constant increase of 25%. The treatment process of recycled concrete aggregate involved soaking in acetic acid, followed by a mechanical process for a short time inside a Los Angeles machine without the balls. This research utilized two primary tests: the standard Marshall test to identify the optimal asphalt contents and the volumetric characteristics of asphalt mixtures. The other one w
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter