Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.
This effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, bauxite,
... Show MoreExposure assays to magnetized water have so far revealed striking results. The present study was conducted to determine the effects of magnetized water treatment with in different intensities 500 , 1000 and 1500 Gauss on some biological aspects for species of freshwater Gastropod Lymnaea lagotis (Schrank, 1803) which important species in faun of aquatic habitats of Iraq. This species are considered a component of the food chain. The obtained results compared with these species which lived in the river(control). Result of these experiments showed increased significance the shell size (shell high, shell aperture length, shell aperture width and shell width) for L. lagotis with increased intensity magnetized water such as treated water with 1
... Show MoreThe Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units. This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized poros
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The co-occurrence of metabolic syndrome with type 2 diabetes mellitus (T2DM) will potentiate the morbidity and mortality that may be associated with each case. Fasting triglycerides-glucose index (TyG index) has been recommended as a useful marker to predict metabolic syndrome. Our study aimed to introduce gender-specific cut-off values of triglycerides- glucose index for diagnosing metabolic syndrome associated with type 2 diabetes mellitus. The data were collected from Baghdad hospitals between May - December 2019. The number of eligible participants was 424. National cholesterol education program, Adult Treatment Panel III criteria were used to define metabolic syndrome. Measurement of fasting blood glucose, lipid pro
... Show MoreIn this paper an atmometer apparatus were used in the greenhouses for estimating reference evapotranspiration values. Experimental work was conducted in the agriculture research center in the College of Agriculture-University of Baghdad west of the city of Baghdad. One atmometer was used in eggplant greenhouse and in cucumber greenhouse through the winter growing season 2013-2014. FAO Penman-Monteith equation was applied outside the greenhouse and used only 65% from the value of ETo in the greenhouses for estimating the reference evapotranspiration in the greenhouse. Moreover, Penman-Monteith equation was applied in greenhouses for the evaluating the performance of the atmometer. The results show that the erro
... Show MoreReceive money laundering phenomenon of interest to researchers and scholars on different intellectual orientation of economic or political or other, as this process is gaining paramount importance in light of business and increase the number of banks in the province of Kurdistan of Iraq and Erbil in particular and in the presence of openness developments chaotic economic and there are no factors encourage money laundering operation because of the presence of the hidden economy and the weakness of the banking and legal measures to combat them, and on this basis there is a need to examine money laundering operation in the province of Arbil, to indicate the presence or absence of a money laundering operation in working in the provin
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More