During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
The current research aimed to identify the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis. It also aims to identify the recovery and resuming plan to the business environment. The research followed the descriptive survey to find out the views of 34 internal auditors at various functional levels in the Kingdom of Saudi Arabia. Spreadsheets (Excel) were used to analyze the data collected by a questionnaire which composed of 43 statements, covering the tasks that the internal auditors can perform to face the COVID-19 crisis. Results revealed that the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis is to en
... Show MoreThe goal of the research is to highlight the role of the governance and its characteristics in increasing the tax outcome by implementing the laws, regulations and annual controls issued annually from the general authority for taxation for the financing of the general treasury of the state, Additional development and economic capacity, As the search shares a view of the governance and its characteristics and its ideas from increasing tax output. The analytical transparent approach was used by adopting the practice of practicalities of the general authority for tax For quotations in the senior cabinet section ,the revealing of the ongoing operations was relied on the revenue for each financial year, The tools adopted in the process of ana
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show MoreBy definition, the detection of protein complexes that form protein-protein interaction networks (PPINs) is an NP-hard problem. Evolutionary algorithms (EAs), as global search methods, are proven in the literature to be more successful than greedy methods in detecting protein complexes. However, the design of most of these EA-based approaches relies on the topological information of the proteins in the PPIN. Biological information, as a key resource for molecular profiles, on the other hand, acquired a little interest in the design of the components in these EA-based methods. The main aim of this paper is to redesign two operators in the EA based on the functional domain rather than the graph topological domain. The perturb
... Show MoreThe theme of causal attribution has generated a great deal of work and focuses on the factors to which people attribute their behavior. However, its use to explain the results of the evaluation and the support for the regulation of teaching and learning acts has rarely been raised. Indeed, in the evaluation act, which is a privileged moment for reframing the learning process, teachers attribute the results obtained to the student himself, without worrying about the factors to which the student attribute itself these failures. This can distort the regulatory process and increase failure factors. The teacher's attributions of failure often relate to the results of the evaluations and are often explained by factors external to him: such as
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show More