Preferred Language
Articles
/
QBcMXJIBVTCNdQwCCK3j
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).

Scopus Crossref
View Publication
Publication Date
Mon Oct 19 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
The effect of using the interactive video accompanying the static training in learning some basic skills of a model school in squash
...Show More Authors

Lately great interests have emerged to find educational alternatives to teach and improve motor skills according to modern educational methods that take into account individual differences and speed in learning for the learner through individual learning that the learner adopts by teaching himself by passing through various educational situations to acquire skills and information in the way he is The learner is the focus of the educational process and among these alternatives the interactive video, the researchers noted through the educational training units at the Model Squash School of the Central Union, and that most of the methods and methods used in learning basic skills take a lot of time in the educational program and do not involve

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
Https://www.researchgate.net/journal/university-of-baghdad-engineering-journal-1726-4073
Electrical Conductivity as a General Predictor of Multiple Parameters in Tigris River Based on Statistical Regression Model
...Show More Authors

Surface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very

... Show More
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Engineering
Electrical Conductivity as a General Predictor of Multiple Parameters in Tigris River Based on Statistical Regression Model
...Show More Authors

Surface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method
...Show More Authors

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus (2)
Scopus
Publication Date
Sun Jul 14 2024
Journal Name
مجلة دراسات وبحوث التربية الرياضية
Construction and Validation of a Cognitive Engagement Scale and Its Relationship with Ball Movement Sequence Performance in Rhythmic Gymnastics
...Show More Authors

The research aims to: build and record a measure of cognitive participation among second-year female students at the College of Physical Education and Sports Sciences, University of Baghdad. The researchers used the descriptive approach in the survey style for the research sample. The sample was selected from female students and divided into: (10) female students for the survey sample, and (80) female students for the construction and codification sample. The data were statistically analyzed by the researchers using SPSS, the T-test for independent and correlated samples, Pearson's simple correlation coefficient, Cronbach's alpha, Chi-square, and Spearman-Brown. They were recruited for the samples. The study concluded that constr

... Show More
Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Computer Engineering And Intelligent Systems
Static Analysis Based Behavioral API for Malware Detection using Markov Chain
...Show More Authors

Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l

... Show More
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Interior Visual Intruders Detection Module Based on Multi-Connect Architecture MCA Associative Memory
...Show More Authors

Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Oct 18 2023
Journal Name
Ieee Access
A New Imputation Technique Based a Multi-Spike Neural Network to Handle Missing Data in the Internet of Things Network (IoT)
...Show More Authors

View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref