Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each parameter tested (i.e., tear strength, surface roughness, hardness, tensile strength and elongation percentage). Specimens were artificially aged in a weathering chamber for 150 h and then tested. Data were analyzed by ANOVA and Tukey’s honestly significant difference (HSD). Statistical significance was set to P ≤ 0.05. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were also conducted. Results and Discussion: SEM results showed that Y2O3 NPs were distributed well within the silicon matrix. FTIR results indicated that the NPs were physically dispersed within VST50F silicone without chemical interaction. After 150 h of accelerated artificial aging, adding Y2O3 NPs significantly increased the tear strength, hardness, surface roughness, and elongation percentage. Tensile strength increased non significantly. Conclusion: Adding Y2O3 NPs as fillers improved the mechanical properties of artificially aged maxillofacial silicone elastomer. Keywords: maxillofacial silicone, Y2O3, nanoparticles, fillers, artificial aging.
The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism
... Show MoreBackground: This in vitro study was carried out to evaluate the effects of various veneering dentin ceramic thicknesses and repeated firings on the color of lithium disilicate glass-ceramic (IPS e.max Press) and zirconium-oxide (IPS ZirCAD) all-ceramic systems, measured by clinical spectrophotometers (Easyshade Advance 4.0) . Materials and methods: The 72specimens cube-shaped have the dimension of about 11 mm in width, 14 mm in length, 1mm in thickness, these cores divided into 3 groups according to the type of material each group have (24)core specimens. Each group had been divided into three sub-groups (each having 8 specimens) according to veneering with dentin ceramic thicknesses: as 0.5, 1, or 2 mm (n=8). IPS e.max press and ZirCAD c
... Show MoreMethotrexate (MTX) is one of the most effective medications to treat rheumatoid arthritis (RA).Aserum of 60 Iraqi male patients suffering from RA as (G1) was newly diagnosis and the same patient in G1 after taking MTX as G2 and 40 Iraqi male healthy control as G3. Nesfatin-1 (Nf-1) is belong to the adipokine family withpleiotropic effect. Nf-1 has been found in different tissues, including stomach, pancreas, bone cells, cartilage and heart. Retinol binding protein (RBP4) was known as transpoter of retinol from its storage sites in the liver to the extrahepatic tissues. Moreover, RBP4 acts as adipokine and contributes in the pathophsyology of prototypic inflammatory disease, rheumatoid arthritis (RA). The results showed a significant increas
... Show MoreN-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
An optical system including quantum dot cylindrical Fresnel lens (CFL) has been designed by using Zemax optical designing program. Quantum dot cylindrical Fresnel lens has a relatively small thickness compared to conventional lenses and high absorbance. It contains grooves in the form of parallel lines, and each groove represents an individual lens that works to change the path of light falling on it to a single focal line. (CFL) is characterized by its small focal length despite its large area and small thickness, due to the nature of its design that gives this feature, which is applied in many optical systems (imaging and non- imaging system). In this paper, the visual properties of the (CFL) were studied as it is one of the impor
... Show MoreThe synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show MoreThis paper displays a survey about the laboratory routine core analysis study on ten sandstone core samples taken from Zubair Reservoir/West Quarna Oil Field. The Petrophysical properties of rock as porosity, permeability, grain's size, roundness and sorting, type of mineral and volumes of shales inside the samples were tested by many apparatus in the Petroleum Technology Department/ University of Technology such as OFITE BLP-530 Gas Porosimeter, PERG-200TM Gas Permeameter and liquid Permeameter, GeoSpec2 apparatus (NMR method), Scanning Electron Microscopy (SEM) and OFITE Spectral Gamma Ray Logger apparatus. By comparing all the results of porosity and permeability measured by these instruments, it is clear a significant vari
... Show More
