This paper presents studying the performance of three types of polyethersulfone (PES) membrane for the simultaneous removal of Co2+ ions, Cd2+ ions, and Pb2+ ions from binary and ternary aqueous solutions. Co2+ ions, Cd2+ ions, and Pb2+ ions with two different initial concentrations (e.g., 10 and 50 ppm) were selected as examples of heavy metals that contaminate the groundwater as a result of geological and human activities. This study investigated the effect of types of PES membrane and metal ions concentration on the separation process. For the binary aqueous solutions, the permeation flux of the PES2 membranes was higher for the separation process of solutions containing 50 ppm of Cd2+ ions and 10 ppm of Co2+ ions (24.7 L/m2·h) and Pb2+ ions (23.7 L/m2·h). All the metals in the binary solutions had high rejection when their initial concentration was lower than the initial concentration of the other metal present in the same solution. Using PES2, the maximum rejection of Cd2+ ions was 61.3% when the initial concentrations were 50 ppm Pb2+ ions: 10 ppm Cd2+ ions and 55.4% for Pb2+ ions when the initial concentrations were 10 ppm Pb2+ ions: 50 ppm Cd2+ ions. For the ternary aqueous solutions, the rejection and the permeation flux of the PES membranes increased with decreasing the heavy metal initial concentration. Using PES2, the maximum permeation flux was 21.6 L/m2·h when the initial concentration of the metals was 10 ppm; and the maximum rejection of the metals obtained at initial concentration of 10 ppm was 50.5% for Co2+ ions, 48.3% for Cd2+ ions, and 40% for Pb2+ ions. The results of the filtration process using PES2 of simulated contaminated-groundwater indicated the efficient treatment of groundwater containing Co2+, Cd2+, and Pb2+ ions.
The removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc
... Show MoreThe uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreThe permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be
The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreThe removal of turbidity from produced water by chemical coagulation/flocculation method using locally available coagulants was investigated. Aluminum sulfate (alum) is selected as a primary coagulant, while calcium hydroxide (lime) is used as a coagulant aid. The performance of these coagulants was studied through jar test by comparing turbidity removal at different coagulant/ coagulants aid ratio, coagulant dose, water pH, and sedimentation time. In addition, an attempt has been made to examine the relationship between turbidity (NTU) and total suspended solids (mg/L) on the same samples of produced water. The best conditions for turbidity removal can be obtained at 75% alum+25% lime coagulant at coagulant dose of 80 m
... Show MoreIn the present work, a study is carried out to remove chromium (III) from aqueous solution by: activated charcoal, attapulgite and date palm leaflet powder (pinnae). The effect of various parameters such as contact time, and temperature has been studied. The isotherm equilibrium data were well fitted by Freundlich and Langmuir isotherm models. The adsorption capacity of chromium (III) that was observed by activated charcoal, attapulgite and date palm leaflet powder (pinnae) increased with the rise of temperature when the concentrations of Cr (III) were 600, 700 and 100mg/L respectively. The greatest adsorption capacity ofactivated charcoal, attapulgite and date palm leaflet powder (pinnae) at 10°C was 7.51, 5.39 and 0.77mg.gˉ¹ respective
... Show MoreThe present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreThe newly synthesized Schiff base ligand (E)-2-((2-phenylhydrazono)methyl)naphthalen-1-ol (phenyl hydrazine derivative), is allowed to react with each of the next mineral ion: Ni2+, Cu2+, Zn2+andCd2+successfully resulting to obtain new metal complexes with different geometric shape. The formation of Schiff base complexes and also the origin Schiff base is indicated using LC-Mass that manifest the obtained molar mass, FT-IR proved the occurrence of coordination through N of azobenzene and O of OH by observing the shifting in azomethines band and appearing of M-N and N-O bands. Moreover, we can also detect by such apparatus, the presence of aquatic water molecule inside the coordination sphere. UV-Vis spectra of all resultants reveale
... Show More