This paper presents studying the performance of three types of polyethersulfone (PES) membrane for the simultaneous removal of Co2+ ions, Cd2+ ions, and Pb2+ ions from binary and ternary aqueous solutions. Co2+ ions, Cd2+ ions, and Pb2+ ions with two different initial concentrations (e.g., 10 and 50 ppm) were selected as examples of heavy metals that contaminate the groundwater as a result of geological and human activities. This study investigated the effect of types of PES membrane and metal ions concentration on the separation process. For the binary aqueous solutions, the permeation flux of the PES2 membranes was higher for the separation process of solutions containing 50 ppm of Cd2+ ions and 10 ppm of Co2+ ions (24.7 L/m2·h) and Pb2+ ions (23.7 L/m2·h). All the metals in the binary solutions had high rejection when their initial concentration was lower than the initial concentration of the other metal present in the same solution. Using PES2, the maximum rejection of Cd2+ ions was 61.3% when the initial concentrations were 50 ppm Pb2+ ions: 10 ppm Cd2+ ions and 55.4% for Pb2+ ions when the initial concentrations were 10 ppm Pb2+ ions: 50 ppm Cd2+ ions. For the ternary aqueous solutions, the rejection and the permeation flux of the PES membranes increased with decreasing the heavy metal initial concentration. Using PES2, the maximum permeation flux was 21.6 L/m2·h when the initial concentration of the metals was 10 ppm; and the maximum rejection of the metals obtained at initial concentration of 10 ppm was 50.5% for Co2+ ions, 48.3% for Cd2+ ions, and 40% for Pb2+ ions. The results of the filtration process using PES2 of simulated contaminated-groundwater indicated the efficient treatment of groundwater containing Co2+, Cd2+, and Pb2+ ions.
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Recent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreThis study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.