Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of M is called St-closed in M, if N has no proper semi-essential extension in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K, then N = K. We investigate the main properties of this type of submodules, and discuss some results that are useful in our work. The class of semi-extending modules is a generalization to the notion of extending modules, where an R-module M is called semi-extending, if every submodule of M is a semi-essential in a direct summand of M. Various properties of semi-extending modules are obtained, and we study the relationships between this class of modules and other related concepts.
Let R be a commutative ring with unity. In this paper we introduce and study the concept of strongly essentially quasi-Dedekind module as a generalization of essentially quasiDedekind module. A unitary R-module M is called a strongly essentially quasi-Dedekind module if ( , ) 0 Hom M N M for all semiessential submodules N of M. Where a submodule N of an R-module M is called semiessential if , 0  pN for all nonzero prime submodules P of M .
Let R be an associative ring with identity. An R-module M is called generalized
amply cofinitely supplemented module if every cofinite submodule of M has an
ample generalized supplement in M. In this paper we proved some new results about
this conc- ept.
Nowadays, a very widespread of smartphones, especially Android smartphones, is observed. This is due to presence of many companies that produce Android based phones and provide them to consumers at reasonable prices with good specifications. The actual benefit of smartphones lies in creating communication between people through the exchange of messages, photos, videos, or other types of files. Usually, this communication is through the existence of an access point through which smartphones can connect to the Internet. However, the availability of the Internet is not guaranteed in all places and at all times, such as in crowded places, remote areas, natural disasters, or interruption of the Internet connection for any reason. To create a
... Show MoreLet R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
Background: The role of prophylactic antibiotics remains controversial. It is clear that actively facial fractures are considered as clean contaminated and should be treated with therapeutic antibiotics; however, there is widespread variability in the use, type, timing, and duration of prophylactic antibiotic administrated in practice today. There is an adverse effect of increased antibiotic resistance, as well as costs, it is important to review the current evidence for the role of prophylactic antibiotics in compound facial fractures. The purpose of this study is to evaluate the role and significance of preoperative, perioperative and postoperative antibiotic prophylaxis for patients when there is already an infective focus, such as co
... Show MoreIn this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.
In the cool semi-arid highland areas of Sana'a, a plant
phonological study of forty two species revealed that there was one
major outburst of plant emergence corresponding with the first period
of the heavy rainfall which take place during March-April. The second
period of heavy rainfall which takes place during July-August shows
moderate effect on emergence and growth.
Plant Species included annuals, biennials and perennials. Perennials
showed
the
following
growth
forms
hemicryptophytes,
chamaephytes, phanerophytes, and cryptophytes. Most plants where
herbaceous and a few where woody
Different Individuals of the same species could behave as annuals,
biennials or perennials. In areas where
In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.