Preferred Language
Articles
/
Pxf0fY8BVTCNdQwC0Xq3
Weakly Small Smiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <italic>a ∈ R, y ∈ G, n∈Z</italic> <sup>+</sup>, (<italic>y</italic>) is small in <italic>G</italic> and 0 ≠ <italic>a<sup>n</sup>y ∈ H</italic>, implies <italic>ay ∈ H</italic>. Many basic properties and characterizations of this type of submodule are given.</p>
Scopus Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximaitly Quasi-primary Submodules

      In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module  over a commutative ring  with identity. This concept is a generalization of prime and primary submodules, where a proper submodule  of an -module  is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either  or , for some . Many basic properties, examples and characterizations of this concept are introduced.

Crossref
View Publication Preview PDF
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-Essential Submodules

Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.

View Publication Preview PDF
Publication Date
Fri May 01 2015
Journal Name
Journal Of Physics: Conference Series
Scopus (1)
Scopus
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On 2-Absorbing Submodules

 Let R be a commutative ring with 10 and M is a unitary R-module . In this paper , our aim is to continue studying 2-absorbing submodules which are introduced by  A.Y. Darani and F. Soheilina . Many new properties and characterizations are given .

View Publication Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Z-Small Quasi-Dedekind Modules

     In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule  of -module  is called z-small (  if whenever  , then . Also,  is called a z-small quasi-Dedekind module if for all  implies  . We also describe some of their properties and characterizations. Finally, some examples are given.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Fully Small Dual Stable Modules

New types of modules named Fully Small Dual Stable Modules and Principally Small Dual Stable are studied and investigated. Both concepts are generalizations of Fully Dual Stable Modules and Principally Dual Stable Modules respectively. Our new concepts coincide when the module is Small Quasi-Projective, and by considering other kind of conditions. Characterizations and relations of these concepts and the concept of Small Duo Modules are investigated, where every fully small dual stable R-module M is small duo and the same for principally small dual stable.

View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
T-Small Quasi-Dedekind modules
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo></mo></mrow></math></inline-formula></p> ... Show More
Scopus Crossref
View Publication
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Small Pointwise M-Projective Modules

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
On δ-Small Projective Modules

Let be a commutative ring with unity and let be a non-zero unitary module. In
this work we present a -small projective module concept as a generalization of small
projective. Also we generalize some properties of small epimorphism to δ-small
epimorphism. We also introduce the notation of δ-small hereditary modules and δ-small
projective covers.

View Publication Preview PDF