This article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing with a foot angle that is too flat (0 degrees) or too forward (more than 15 degrees) can lead to concentrated forces on specific areas, increasing the risk of injuries like plantar fasciitis, Achilles tendonitis, and stress fractures. Recommendations: Maintain a forward foot angle of around 15 degrees during jumps for better stability and injury prevention. Consider consulting a healthcare professional or sports trainer for personalized advice on foot angle and jump mechanics. The article also explores findings from bird studies on foot advancement angle, but acknowledges these may not directly translate to humans. It emphasizes the importance of consulting professionals for personalized recommendations to optimize jump performance and minimize injury risk. and this achieves one of the sustainable development goals of the United Nations in Iraq which is (Good Health).
Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. In this investigation an attempt
has been made to understand the effect of tool pin profile and rotation diameter on microstructure and mechanical properties in aluminum alloy (2218-T72). Five different tool pin profiles (straight cylindrical, threaded cylindrical, triangular, square, and threaded cylindrical with flat), with three different rotation
d
This work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreBackground:In this study,TiO2 layer was thermally grown as a diffusion barrier on CP Ti substrate prior to electrophoretic deposition of HA coatings, to improve the coating’s compatibility also macro and micro pores in nano Hydroxyapatite dual coatings were created and their effect on the bond strength between the bone and implant was evaluated. Materials and methods: Electrophoretic Deposition technique (EPD) was used to obtain coatings for each one of four types of Hydroxyapatite(HA)on CP Ti screws (micro HA, nano HA, dual nano HA with micro pores, dual nano HA with macro pores) where carbon particles used as fugitive material to be removed by thermal treatment to create porosity.For examination of the changes occurred on the subs
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
PVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglom
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe Skyrme–Hartree–Fock (SHF) method with the Skyrme
parameters; SKxtb, SGII, SKO, SKxs15, SKxs20 and SKxs25 have
been used to investigate the ground state properties of some 2s-1d
shell nuclei with Z=N (namely; 20Ne, 24Mg, 28Si and 32S) such as, the
charge, proton and matter densities, the corresponding root mean
square (rms) radii, neutron skin thickness, elastic electron scattering
form factors and the binding energy per nucleon. The calculated
results have been discussed and compared with the available
experimental data.
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show MoreIn this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show More