This article investigates the relationship between foot angle and jump stability, focusing on minimizing injury risk. Here are the key points: Importance: Understanding foot angle is crucial for improving jump stability, athletic performance, and reducing jump-related injuries like ankle sprains. Ideal Foot Angle: Research suggests a forward foot angle of around 15 degrees might be ideal for many people during jumps. This angle distributes forces evenly across the foot, lowers the center of gravity, and provides more surface area for pushing off the ground. Factors Affecting Ideal Angle: The optimal angle can vary depending on the type of jump (vertical vs. long jump), fitness level, and personal preference. Incorrect Foot Angles: Landing with a foot angle that is too flat (0 degrees) or too forward (more than 15 degrees) can lead to concentrated forces on specific areas, increasing the risk of injuries like plantar fasciitis, Achilles tendonitis, and stress fractures. Recommendations: Maintain a forward foot angle of around 15 degrees during jumps for better stability and injury prevention. Consider consulting a healthcare professional or sports trainer for personalized advice on foot angle and jump mechanics. The article also explores findings from bird studies on foot advancement angle, but acknowledges these may not directly translate to humans. It emphasizes the importance of consulting professionals for personalized recommendations to optimize jump performance and minimize injury risk. and this achieves one of the sustainable development goals of the United Nations in Iraq which is (Good Health).
The adsorption ability of Iraqi initiated calcined granulated montmorillonite to adsorb of 4-(4-Nitrobenzeneazo) 3-Aminobenzoic Acid from aqueous solutions has been investigated through columnar method. The azo dye adsorption found to be dependent on adsorbent dosage, initial concentration and contact time. All columnar experiments were carried out at three different pH values (5.5, 7and 8) using buffer solutions at flow rate of (3 drops/ min.), at room temperature (25±2) °C. The experimental isotherm data were analyzed using Langmuir, Freundlich and Temkin equations. The monolayer adsorption capacity is 6.4066 mg Azo ligand per 1g calcined Montmorillonite. The experiments showed that highest removal rate 90.5 % for azo dye at pH 5.5.The
... Show MoreHuge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MoreIn this paper , two method which deal with finding the optimal value for adaptive smoothing constant, are compared .This constant is used in adaptive Single Exponential Smoothing (ASES).
The comparing is between a method uses time domain and another uses frequency domain when the data contain outlier value for autoregressive model of order one AR(1) , or Markov Model, when the time series are stationary and non stationary with deferent samples .
The research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
A new, simple and sensitive method was used forevaluation of propranolol withphosphotungstic acidto prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between propranolol and phosphotungstic acid in an aqueous medium to obtain a yellow precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.007-13 mmol/L for cell A and 5-15 mmol/L for cell B, and LOD 207.4792 ng/160 µL and 1.2449 µg/160 µL respectively to cell A and cell B with correlation coefficient (r) 0.9988 for cell A, 0.9996 for cell B, RSD% was lower than 1%, (n=8) for the
... Show MoreA sensitivity-turbidimetric method at (0-180o) was used for detn. of mebeverine in drugs by two solar cell and six source with C.F.I.A.. The method was based on the formation of ion pair for the pinkish banana color precipitate by the reaction of Mebeverine hydrochloride with Phosphotungstic acid. Turbidity was measured via the reflection of incident light that collides on the surface particles of precipitated at 0-180o. All variables were optimized. The linearity ranged of Mebeverine hydrochloride was 0.05-12.5mmol.L-1, the L.D. (S/N= 3)(3SB) was 521.92 ng/sample depending on dilution for the minimum concentration , with correlation coefficient r = 0.9966while was R.S.D%
... Show More