The Dynamic Load Factor (DLF) is defined as the ratio between the maximum dynamic and static responses in terms of stress, strain, deflection, reaction, etc. DLF adopted by different design codes is based on parameters such as bridge span length, traffic load models, and bridge natural frequency. During the last decades, a lot of researches have been made to study the DLF of simply supported bridges due to vehicle loading. On the other hand, fewer works have been reported on continuous bridges especially with skew supports. This paper focuses on the investigation of the DLF for a highly skewed steel I-girder bridge, namely the US13 Bridge in Delaware State, USA. Field testing under various load passes of a weighed load vehicle was used to validate full-scale three-dimensional finite element models and to evaluate the dynamic response of the bridge more thoroughly. The results are presented as a function of the static and dynamic tensile and compressive stresses and are compared to DLF code provisions. The result shows that most codes of practice are conservative in the regions of the girder that would govern the flexural design. However, the DLF sometimes exceeds the code-recommended values in the vicinity of skewed supports. The discrepancy of the DLF determined based on the stress analysis of the present study, exceeds by 13% and 16% the values determined according to AASHTO (2002) for tension and compression stresses respectively, while, in comparison to BS5400, the differences reach 6% and 8% respectively.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreDiabetes mellitus type 2 (T2DM) formerly called non-insulin dependent diabetes mellitus (NIDDM) or adult-onset diabetes is a common disease. Rheumatoid factor is a well-established test used in the diagnosis and follows the prognosis of rheumatoid arthritis (RA). Rheumatoid factor is sometimes found in serum of patients with other diseases including diabetes mellitus (DM), due to the presence of pro-inflammatory cytokines such as TNF- α which play an important role in chronic inflammatory and autoimmune diseases like rheumatoid arthritis (RA). The aim of the study is to investigate the associations between type 2 diabetes mellitus (T2DM) and rheumatoid arthritis (RA) in scope of rheumatoid factor (RF), hyperglycemia a
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreExperimental research was carried out on eight reinforced concrete beams to study the embedded length of the longitudinal reinforcement. Six beams were casted using self compacted concrete, and the two other beams were casted using normal concrete. The test was carried out on beams subjected to two point loads. The strain and the slip of the main reinforcement have been measured by using grooves placed during casting the beams at certain places. The measured strain used to calculate the longitudinal stresses (bond stress) surrounding the bar reinforcement, The study was investigated the using of self compacted concrete SCC on the embedded length of reinforcing bars, and comparing the results with normal concrete. The test results show th
... Show MoreThe corrosion behavior of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) has been studied. The corrosion inhibition of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) by Ciprofloxacin has been investigated. Specimens were exposed in the acidic media for 7 hours and corrosion rates evaluated by using the weight loss method. The effect of temperature (from 283 ºK to 333 ºK), pH (from 1to 6), inhibitor concentration (10-4 to 10-2) has been studied. It was observed that sulphuric acid environment was most corrosive to the metals because of its oxidizing nature, followed by hydrochloric acid. The rate of metal dissolution increased with incre
... Show MoreThis paper studies the effects of stiffeners on shear lag in steel box girders with stiffened flanges. A three-dimensional linear finite element analysis using STAAD.Pro V8i program has been employed to evaluate and determine the actual top flange stress distribution and effective width in steel box girders. The steel plates of the flanges and webs have been modeled by four-node isoparametric shell elements, while the stiffeners have been modeled as beam elements. Different numbers (4, 8, and 15) for the steel stiffeners have been used in this study to establish their effects on the shear lag and longitudinal stresses in the flange. Using stiffeners reduced the magnitude of the top flange longitudinal stresses about 40%, but did
... Show MoreAn experimental investigation based on thirty three simple pullout cylinder specimens was conducted to study the bond-slip trend between concrete and steel reinforcement. Plain and deformed steel reinforcement bars were used in this investigation. The effect of bar diameter, concrete compressive strength and development length on bond-slip relation was detected. The results showed that the bond strength increases with increasing of compressive strength and with decreasing of bar diameter and development length. A nonlinear regression analysis for the experimental results yields in a mathematical correlation to predict the bond strength as a function of concrete compressive strength, reinforcing bar diameter and its yield stress. The minimum
... Show MoreMany problems are facing the installation of piles group in laboratory testing and the errors in results of load and settlement are measured experimentally may be happened due to select inadequate method of installation of piles group. There are three main methods of installation in-flight, pre-jacking and hammering methods. In order to find the correction factor between these methods the laboratory model tests were conducted on small-scale models. The parameters studied were the methods of installation (in-flight, pre-jacking and hammering method), the number of piles and in sandy soil in loose state. The results of experimental work show that the increase in the number of piles value led to increase in load carrying capacity of piled raft
... Show More