Preferred Language
Articles
/
PhfZkI8BVTCNdQwCdnuC
Application of Healthcare Management Technologies for COVID-19 Pandemic Using Internet of Things and Machine Learning Algorithms
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
The efficiency of cluster analysis to analyzing medical image of Covid-19 patient by using K-means algorithm
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Oct 18 2023
Journal Name
Ieee Access
A New Imputation Technique Based a Multi-Spike Neural Network to Handle Missing Data in the Internet of Things Network (IoT)
...Show More Authors

View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Asian Journal Of Pharmacy And Pharmacology
Clinical manifestations and maternal outcomes of COVID-19 in pregnancy: A systematic review
...Show More Authors

View Publication
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Revista Iberoamericana De Psicología Del Ejercicio Y El Deporte
THE IMPACT OF COVID-19 ON FOOTBALL CLUB STOCK INTEGRATION AND PORTFOLIO DIVERSIFICATION
...Show More Authors

Scopus (6)
Scopus
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Advanced Computer Science And Applications
Automatic Approach for Word Sense Disambiguation Using Genetic Algorithms
...Show More Authors

Abstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jun 27 2021
Journal Name
Iraqi National Journal Of Nursing Specialties
Detection of Depression among Nurses Providing Care for Patients with COVID-19 at Baqubah Teaching Hospital
...Show More Authors

Objectives: The present study aims at detecting the depression among nurses who provide care for infected patients with corona virus phenomenon and to find out relationships between the depression and their demographic characteristics of age, gender, marital status, type of family, education, and years of experience of nurses in heath institutions, infection by corona virus, and their participation in training courses.
Methodology: A descriptive study is established for a period from October 10th, 2020 to April 15th, 2021. The study is conducted on a purposive (non-probability) sample of (100) nurse who are providing care for patients with COVID-19 and they are selected from the isolation wards. The instrument of the study is develope

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Jul 18 2022
Journal Name
Bmc Public Health
Children’s rates of COVID-19 vaccination as reported by parents, vaccine hesitancy, and determinants of COVID-19 vaccine uptake among children: a multi-country study from the Eastern Mediterranean Region
...Show More Authors
Abstract<sec> <title>Background

Huge efforts are being made to control the spread and impacts of the coronavirus pandemic using vaccines. However, willingness to be vaccinated depends on factors beyond the availability of vaccines. The aim of this study was three-folded: to assess children’s rates of COVID-19 Vaccination as reported by parents, to explore parents’ attitudes towards children’s COVID-19 vaccination, and to examine the factors associated with parents’ hesitancy towards children’s vaccination in several countries in the Eastern Mediterranean Region (EMR).

Meth ... Show More
View Publication
Scopus (55)
Crossref (45)
Scopus Clarivate Crossref