In this paper, turbidimetric and reversed-phase ultra-fast liquid chromatography (UFLC) methods were described for the quantitative determination of ephedrine hydrochloride in pharmaceutical injections form. The first method is based on measuring the turbidimetric values for the formed yellowish white precipitate in suspension status in order to determine the ephedrine hydrochloride concentration. The suspended substance is formed as a result of the reaction of ephedrine hydrochloride with phosphomolybdic acid which was used as a reagent. The physical and chemical characteristics of the complex were investigated. The calibration graphs of ephedrine were established by turbidity method. While the second method (UFLC) was conducted using the methanol-water (55+45, v/v) as the mobile phase with adjusted water pH 3.5. The ephedrine hydrochloride was detected and measured using UV detector at 260 nm. The linearity of ephedrine was obtained in the range of 0.09–0.39 mmol·l-1 . The detection limits (LOD) for the ephedrine hydrochloride were found to be 0.4 and 0.0044 mmol·l-1 by turbidity and UFLC, respectively. The developed methods were successfully applied for the quantitative determination of ephedrine hydrochloride in laboratory preparations (standard) and in commercial pharmaceutical injections. The two methods have given relative standard deviations (R.S.D.) in the range of 0.65–1.69 %, which indicates reasonable repeatability and high precision of both methods.
Genistein (GEN) is one of the predominant dietary isoflavones found in legumes such as soybeans. Genistein has been recommended as an osteoporosis treatment for postmenopausal women and elderly men, with the intention of reducing cardiovascular disease and hormone-dependent malignancies. Therefore, two sensitive and simple methods for quantifying it in the supplements preparation were developed.The first method (A) comprised employing the surfactant Triton X-114 to extract the result of the diazotization reaction with 4-Aminoacetophenone(4AMA) utilizing a cloud point extraction technique. The product was extracted using micelles of a non-ionic surfactant (TritonX-114) and then spectrophotometrically detected at a specified wa
... Show MoreABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreMultiple sclerosis (MS) is a neuro-inflammatory disorder in which the Epstein-Barr virus (EBV) is proposed to have a pathogenic role. Therefore, a case-control study was performed (93 patients with relapsing-remitting MS and 113 healthy controls (HC) to analyze the prevalence and viral load of EBV infection using real time-polymerase chain reaction. Prevalence of EBV infection was lower in patients compared to HC but the difference was not significant (12.9 vs. 21.2%; probability [p] = 0.187). EBV-positive MS cases were more common in females than in males (83.3 vs. 16.7%), while an opposite distribution was observed in HC (37.5 vs. 62.5%), and the difference was significant (p = 0.041). Blood group O frequency was higher in EBV-p
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreA direct spectrophotometric method has been developed for the
determination of nitrite in aqueous solution. The method is based on the reaction of the nitritw ion with an acidified anline solution from diazonium cation , which is subsequently coupled ·with 4,6 - dihydroxy- 2- mercapto pyrimidine to from yellow colored and water
- soluble intense azo dye with maximum absorption at 416nm . A
graph of absorbance versus concentration shows that Bee's
... Show MoreA method was developed that offers a rapid, simple and accurate technique for the determination of chlorophenols at trace levels in aqueous samples with very limited volumes of organic solvents. These compounds were acetylated, then preliminarily extracted with n-hexane. The enriched chlorophenols were directly analyzed using gas chromatography with an electron-capture detector. The detection limits were in the range of 0.001–0.005 mg/L, except for 2-chlorophenol, which was always above 0.013 mg/L. Relative standard deviation for the spiked water samples ranged from 2.2 to 6.1%, while relative recoveries were in the range of 67.1 to 101.3%.
In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec
... Show More