A tetradentate (N2O2) Schiff base (H2Ldfm) was successfully synthesized via condensation of curcumin / diferuloylmethane (dfm) and L-leucine amino acid (HL). There were three different methods that used for synthesizing H2Ldfm; (refluxing, grading, and fusion). Ten different metal complexes were also successfully synthesized by combination of the Schiff base (H2Ldfm) and 1,10-phenanthroline (phen) ligand to form a hexadentate (N4O2) mixed ligands (Ldfm , phen) with ten different metal salts (M) where{ M= Al(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Ag(I), Cd(II), Hg(II), and Pb(II)}. The molar ratio of reactants was (1:1:1) (M: H2Ldfm : phen). The new Schiff base and its new complexes were characterized by different physicochemical techniques such as FT-IR, UV-Visible, elemental analysis (C.H.N), 13C-NMR, 1H-NMR, molar conductivity, mass spectroscopy, magnetic susceptibility, and thermal analysis. All complexes exhibited octahedral geometry. The solution conductivity of (Al (III), Fe (III), and Ag(I)) complexes in DMSO shows an electrolytic behavior, while the solution conductivity of (Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and Pb(II)) complexes shows nonelectrolytic attitude. The Schiff base (H2Ldfm) and its metal complexes were used for industrial and biological application such as dyeing cotton fibers testing and two types of bacteria testing like (Staphylococcus aureus and Escherichia Coli).
This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
Due to the broad range uses of chromium for industrial purposes, besides its carcinogenic effect, an efficient, cost effective removal method should be obtained. In this study, cow bones as a cheap raw material were utilized to produce active carbon (CBAC) by physiochemical activation, which was characterized using: SEM to investigate surface morphology and BET to estimate the specific surface area. The best surface area of CBAC was 595.9 m2/gm which was prepared at 600 ᵒC activation temperature and impregnation ratio of 1:1.5. CBAC was used in aqueous chromium ions adsorption. The investigated factors and their ranges are: initial concentration (10-50 mg/L), adsorption time (30-300 min), temperature (20-50
... Show MoreBiosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
The present study aims to remove nickel ions from solution of the simulated wastewater using (Laminaria saccharina) algae as a biosorbent material. Effects of experimental parameters such as temperature at (20 - 40) C⁰, pH at (3 - 7) at time (10 - 120) min on the removal efficiency were studied.
Box-Wilson method was adopted to obtain a relationship between the above three experimental parameters and removal percentage of the nickel ions. The experimental data were fitted to second order polynomial model, and the optimum conditions for the removal process of nickel ions were obtained.
The highest removal percentage of nickel ions obtained was 98.8 %, at best operating conditions (Temperature 35 C⁰, pH 5 and Time 10 min).
This study was performd on 50 serum specimens of patients with type 2 diabetes, in addition, 50 normal specimens were investigated as control group. The activity rate of LAP in patients (560.46 10.504) I.U/L and activity rate of LAP in healthy(10.58 4.39)I.U/L.The results of the study reveal that Leucine aminopeptidase (LAP) activity of type 2 diabetes patient s serum shows a high signifiacant increase (p < 0.001) compare to healthy subjects. Addition preparation leucine amide as substrate of LAP, identification melting point and spectra by FTIR. K
Football has progressed from being a ritual and a celebration to become an amateur sport, a professional sport, and now, increasingly, a commercial sport. In the analysis of football business model, the systemic approach should be adopted. If sport is regarded as one of the business sectors, then the application of business system methodology can be fully justified. The interest to create strong football business system calls for the search of the ways of popularizing football business model and boosting the economic potential of its participants. In the research literature tend to ignore the business processes within the sports business. Besides, the systemic approach in football business is usually limited to p
... Show MoreThe quality of groundwater should be improved by keeping safe water sources from contaminants in protective way by doing regular measuring and checkup before it supplied for usage. Private Wells do not receive the same services that wells supplying the public do. Well owners are responsible for protecting their drinking water. This work was carried out in Badra city, Iraq from December 2017 to May 2018, six wells water were investigated to determine the general characteristics of wells as well as studying the effect of environmental factors on the quality of water. The average of six wells were eleven parameters that is out of permissible limits were EC, Sal., Alk., TH, TDS, Na, Ca, Cl, SO4, Fe, Zn (4402-5183 /cm, 2.76-3.9 ppt
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show More