A twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, number, thickness, and the height of the twisted fins for superior performance of the proposed fin structure, was also introduced via the Taguchi method. The results show that a faster charging rate, higher storage rate, and better uniformity in temperature distribution could be achieved in the PCMs with Twisted fins. Based on the design of twisted fins, it was found that the energy charging time could be reduced by up to 42%, and the energy storage rate could be enhanced up to 63% compared to the reference case of straight longitudinal fins within the same PCM mass limitations.
The present study was designed to investigate the possibility of exploiting the interspecies interaction of microbial cells in order to enhance the production of prodigiosin by local isolate S. marcescens S23. Prodigiosin is a promising drug owing to its characteristics of antibacterial, antifungal, immunosuppressive and anticancer activities. S. marcescens S23 was isolated from soil sample and already recognized via morphological, biochemical and molecular identification process. The first step was to detect the optimal conditions for maximum prodigiosin production using chemically defined liquid medium. The results revealed that the optimal conditions for prodigiosin production were sucrose as carbon source; peptone as nitrogen source;
... Show MoreIndustrial dyes are major pollutants in wastewater and river water with an initial visible concentration of 1 mg/L. Recent studies have shown the possibility of using polyphenol oxidase in catalytic biological treatment due to its ability to oxidize a large number of dyes and pollutants in wastewater and the flexibility to work in wide ranges of temperature, pH and salinity. It is easy availability as well as the low economic cost resulting from its use in biological treatments, this enzyme polyphenol oxidase was used. The findings in this study showed that the extraction of polyphenol oxidase (PPO) from potato peel was homogenized with potassium phosphate buffer (0.1 M, pH 7) at a ratio of 1:10 (weight: volume) for two min. The res
... Show MoreIn the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM), blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depe
... Show MoreA novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show MoreDespite their long successful use, synthetic dyes have several problems due to their carcinogenic and toxic effects. Besides providing bright colors, some natural pigments have shown notable antimicrobial activity; thus, they could be utilized as functional dyes in many applications such as making colored antimicrobial textiles. In this work, a yellow pigment produced by Streptomyces thinghirensis AF7 and has a notable antimicrobial activity was used to produce a colored antimicrobial textile. The extracted yellow pigment was subjected to a purification step using silica gel column eluted with di ethyl ether solvent. The FTIR, GC-MS and NMR analysis showed that the colorings in this type of product are due to t
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
The present work determines the particle size based only on the number of tracks detected in a cluster created by a hot particle on the CR-39 solid state nuclear track detector and depending on the exposure time. The mathematical model of the cross section developed here gives the relationship between alpha particle emitting from the (n, α) reaction and the number of tracks created and distribution of tracks created on the surface of the track detector. In an experiment performed during this work, disc of boron compound (boric acid or sodium tetraborate) of different weights were prepared and exposed to thermal neutron from the source. Chemical etching is processes of path formation in the detector, during which a suitable etching solut
... Show More