Preferred Language
Articles
/
PRdyXo8BVTCNdQwCVHTq
Text Steganography Based on Arabic Characters Linguistic Features and Word Shifting Method
...Show More Authors

In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harnesses the unique attributes of this language, encompassing its complex character designs, diacritical marks, and ligatures, to effectively protect information. In this work, we propose a new text steganography method based on Arabic language characteristics concealment, where the proposed method has two levels of security which are: Arabic encoding and word shifting. In the first step, build a new Arabic encoding mapping table to convert an English plaintext to Arabic characters, then use a word shifting process to add an authentication phase for the sending message and add another level of security to the achieved ciphertext. The proposed method showed that Arabic language characteristics steganography achieved 0.15 ms for 1 k, 1.0033 ms for 3 k, 2.331 ms for 5 k, and 5.22 ms for 10 k file sizes respectively.

Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Optical Images Fusion Based on Linear Interpolation Methods
...Show More Authors

Merging images is one of the most important technologies in remote sensing applications and geographic information systems. In this study, a simulation process using a camera for fused images by using resizing image for interpolation methods (nearest, bilinear and bicubic). Statistical techniques have been used as an efficient merging technique in the images integration process employing different models namely Local Mean Matching (LMM) and Regression Variable Substitution (RVS), and apply spatial frequency techniques include high pass filter additive method (HPFA).  Thus, in the current research, statistical measures have been used to check the quality of the merged images. This has been carried out by calculating the correlation a

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Telecom Churn Prediction based on Deep Learning Approach
...Show More Authors

      The transition of customers from one telecom operator to another has a direct impact on the company's growth and revenue. Traditional classification algorithms fail to predict churn effectively. This research introduces a deep learning model for predicting customers planning to leave to another operator. The model works on a high-dimensional large-scale data set. The performance of the model was measured against other classification algorithms, such as Gaussian NB, Random Forrest, and Decision Tree in predicting churn. The evaluation was performed based on accuracy, precision, recall, F-measure, Area Under Curve (AUC), and Receiver Operating Characteristic (ROC) Curve. The proposed deep learning model performs better than othe

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Time Series Modeling
...Show More Authors

    Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
2019 2nd International Conference On Engineering Technology And Its Applications (iiceta)
Human Gait Identification System Based on Average Silhouette
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Human Action Recognition Based on Bag-of-Words
...Show More Authors

Human action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jun 26 2021
Journal Name
2021 Ieee International Conference On Automatic Control &amp; Intelligent Systems (i2cacis)
Vulnerability Assessment on Ethereum Based Smart Contract Applications
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Thu Jan 14 2021
Journal Name
Iraqi Journal Of Science
Network Authentication Protocol Based on Secure Biometric NIDN
...Show More Authors

In this paper an authentication based finger print biometric system is proposed with personal identity information of name and birthday. A generation of National Identification Number (NIDN) is proposed in merging of finger print features and the personal identity information to generate the Quick Response code (QR) image that used in access system. In this paper two approaches are dependent, traditional authentication and strong identification with QR and NIDN information. The system shows accuracy of 96.153% with threshold value of 50. The accuracy reaches to 100% when the threshold value goes under 50.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 14 2021
Journal Name
Iraqi Journal Of Science
Identifying Digital Forensic Frameworks Based on Processes Models
...Show More Authors

Digital forensic is part of forensic science that implicitly covers crime related to computer and other digital devices. It‟s being for a while that academic studies are interested in digital forensics. The researchers aim to find out a discipline based on scientific structures that defines a model reflecting their observations. This paper suggests a model to improve the whole investigation process and obtaining an accurate and complete evidence and adopts securing the digital evidence by cryptography algorithms presenting a reliable evidence in a court of law. This paper presents the main and basic concepts of the frameworks and models used in digital forensics investigation.

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Improve topic modeling algorithms based on Twitter hashtags
...Show More Authors
Abstract<p>Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned</p> ... Show More
View Publication
Scopus (18)
Crossref (15)
Scopus Crossref