Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreFree Piston Engine Linear Generator (FPELG) is a modern engine and promising power generation engine. It has many advantages compared to conventional engines such as less friction, few numbers of parts, and high thermal efficiency. The cycle-to-cycle variation one of the big challenges of the FPELG because it is influence on the stability and output power of the engine. Therefore, in this study, the effect of ignition time on combustion characteristics is investigated. The single-cylinder FPELG with spark ignition (SI) combustion type by using compressed natural gas (CNG) fuel type was set to run. LabVIEW is used to run the engine and control of input parameters. All experimental data
This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.
Objectives: to evaluate the role of conservative, decompression, spine fixation in management of closed spinal injury.
Methods: The study was conducted at Specialized Surgical hospital and Al-Kadhemayia Teaching Hospital, in the period between July 2003 and July 2005.The study included 61 patients categorized Into many groups according level of vertebral injury (cervical, cervicodorsal, dorsal, dorsolumbar, Lumbar and lumbosacral), type of injury (compressed fracture, burst fracture and fracture dislocation) And according the severity into three groups as G1( complete motor paralysis and sensory loss ) G2 ( complete motor paralysis and incomplete sensory loss) and G3 ( incomplete motor paralysis And incomplete sensory loss ).The metho
Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show MoreThe problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreABSTRACT
This study aimed to choose top stocks through technical analysis tools specially the indicator called (ratio of William index), and test the ability of technical analysis tools in building a portfolio of shares efficient in comparison with the market portfolio. These one technical tools were used for building one portfolios in 21 companies on specific preview conditions and choose 10 companies for the period from (March 2015) to (June 2017). Applied results of the research showed that Portfolio yield for companies selected according to the ratio of William index indicator (0.0406) that
... Show More