<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreAsthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role. The treatment guidelines recommend theuse of a second controller drug in addition to medium doses of inhaled corticosteroids (ICSs) rather than the use of high doses ICS alone in the treatment of moderate-severe persistent asthma. This study was conducted to compare the clinical efficacy and safety of three treatment regimens in Iraqi patients with moderate-severe persistent asthma.The study included three groups; each group included 15 patients. Patients were administered beclomethasone inhaler alone 1500-2000 μg/day, beclomethasone inhaler 750-1000 μg/day plus oral controlled release aminophylline tablets 450 mg/day or
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreIn this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa
... Show MoreWater is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a resul
... Show MoreThe aim of this article is to study the solution of Elliptic Euler-Poisson-Darboux equation, by using the symmetry of Lie Algebra of orders two and three, as a contribution in partial differential equations and their solutions.
Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreIn this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-
... Show MoreThe research aims to identify the level of balance in the architectural thought influenced by the rational type human consciousness, the materialistic based on the Empirical type, moral based on human experience as source of knowledge.
This was reflected in architecture in the specialized thought that the mind is the source of knowledge which explains the phenomena of life. The rational approach based on objectivity and methodology in (Form Production), the other approach is based on subjectivity in form production (Form Inspiration).
The research problem is that there is imbalance in the relationship between the rational side and the human experience in architecture, which led into imbalance between theo
... Show MoreThe Internet of Things (IoT) has become a hot area of research in recent years due to the significant advancements in the semiconductor industry, wireless communication technologies, and the realization of its ability in numerous applications such as smart homes, health care, control systems, and military. Furthermore, IoT devices inefficient security has led to an increase cybersecurity risks such as IoT botnets, which have become a serious threat. To counter this threat there is a need to develop a model for detecting IoT botnets.
This paper's contribution is to formulate the IoT botnet detection problem and introduce multiple linear regression (MLR) for modelling IoT botnet features with discriminating capability and alleviatin
... Show More