Spatial Intelligence is a mental ability to understand and solve real-world problems. These visual-spatial representations are fundamental in learning various "STEM" topics, like digital drawing, art presentations, creating graphical representations, 2D designs. Opportunity to interact with real and/or virtual objects. It is a good opportunity in applying new techniques such as the augmenter, which is able to clarify mathematical tables, concepts and generalizations greatly to the visualization, understanding and mastery of concepts mathematically. The purpose of the research is to investigate impact of using AR technology in developing spatial intelligence for secondary school students, Baghdad. The quasi-experimental design was used, the participants consisted of (60) students of 4th class scientific in mathematics. Tools used where a spatial intelligence scale was prepared and contains three skills that include (20) questions. Research findings show that AR technology has a positive on spatial intelligence in mathematics, and concluded with a set of recommendations and proposals.
Abstract
In light of the great technological development and the emergence of globalization has increased global competition, where it became competitive exercise pressure on all sectors. In light of this companies mast enviorment depend on the means that keeps them on the competitive position through access to information about competitors in order to help them to draw a strategy that will achieve a competitive edge either through excellence or reduce the costs of their products and this means intelligence competitive and reverse engineering that help to gain information on competitors analyze and put of the decision-maker From this point formed the idea of research in the statement of the role of
... Show MoreThis study focuses on how tax administrations in Iraq use Artificial Intelligence (AI) techniques to monitor tax evasion for individuals and companies to achieve Tax Compliance (TC). AI was measured through four dimensions: Advanced Data Analytics Techniques (ADAT), Explainable AI (EAI), Machine learning (ML), and Robotic Process Automation (RPA). At the same time, TC was measured through registration, accounting, and tax payment stages. We relied on the questionnaire form to measure the variables. A sample of employees in the General Tax Authority in Iraq was selected, and a questionnaire was distributed to 132 people. The results indicated that the dimensions of AI affect achieving TC at all stages. This study provides evidence of using A
... Show MoreThe research aims to study the entrepreneurial performance of the banks, according to the intelligence of competitive and strategic as the entrepreneurial performance is the one who does not stand the benefits of excellence in accomplished when just achieving the bank's objectives planned, but exceed it down to creativity in accomplishing these goals in a manner leads to making a entrepreneurial bank in the markets and the focus the eyes of competitors and the banks and other Following his example.
Was chosen the subject of research and strategic intelligence and competitive because of its impact on the strategic success of the banking sector, the fact is the entrepreneurial in the Iraqi banking mar
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThis paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThis study aims at finding out the sentimental smartness of the kindergarten children
and its relationship with some variables.
1- The level of the sentimental smartness of the kindergarten children.
2- Investigating the Zero hypothesis in that there are no significant statistical differences in
the sentimental smartness between the kindergarten children according to the sex variables
(males and females).
Some statistical tools have been used in order to arrive at the results that verify the
hypotheses of this study. The researcher uses (1) the distinctive power between two
distinctive groups; (2) the relationship between the item and the total degree (Pearson
correlation factor); and (3) Elfakronbach formula t