Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images.This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, newfeatures, and applications. Itstarts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance.Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening
Rhythm is considered one of the creative concepts in the recent architectural thought; it has emerged clearly as a mean of creating the highest levels of creativity in architecture, especially in contemporary architectural movements. The importance of rhythm has emerged, especially, when the architecture , its beginnings concentrated on the principle of the links with poetic structures. Many architectural studies deal with concept of rhythm in architecture with different ways various according to the trend of each study, this show the importance of studying the concept of rhythm in the architectural field in general. This study try to focus on the utilization of rhythm as creative system in architecture of heritage and contemporary
... Show MoreThe Yamama Formation is characterized by a wide geographic extension of southern Iraq. Microfacies analysis of this formation was studied in six wells distributed in six fields: Fayhaa, Sindbad, Siba, Zubair, Ratawi and West Qurna. This research aims to determine paleoenvironments by diagnosing biofacies and lithofacies. Miscellaneous marine fauna of foraminifera and calcareous algae, mainly green algae (dasycladacean.) and skeletal bioclasts from gastropods, pelecypods, bryozoans, sponge spicules, and echinoderms were found. Petrographic studies and well logs interpretations led to the identification of five main Microfacies ( Mudstone, Wackestone, Packestone, Grainestone and Rudstone and twelve submicrofacies (Foraminiferal-
... Show MoreIt is so much noticeable that initialization of architectural parameters has a great impact on whole learnability stream so that knowing mathematical properties of dataset results in providing neural network architecture a better expressivity and capacity. In this paper, five random samples of the Volve field dataset were taken. Then a training set was specified and the persistent homology of the dataset was calculated to show impact of data complexity on selection of multilayer perceptron regressor (MLPR) architecture. By using the proposed method that provides a well-rounded strategy to compute data complexity. Our method is a compound algorithm composed of the t-SNE method, alpha-complexity algorithm, and a persistence barcod
... Show Morel
Many water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu
... Show MoreBackground: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show More