Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect detection, including temperature analysis and image processing algorithms, are thoroughly presented. The factors contributing to the effectiveness of thermography cameras are explored, along with their advantages over traditional inspection methods. The literature review highlights the diverse applications of thermography cameras in fault detection. The review highlights the remarkable transformation brought by thermal camera technology in mechanical system fault detection, leading to improved maintenance practices. These cameras can detect unseen irregularities, enable non-invasive testing and support hands-on system maintenance, making them indispensable tools for ensuring mechanical systems operate efficiently, reliably and safely. With the continuous advancement of technology, the integration of Industry 4.0 and IoT technologies will further enhance the capabilities of thermal cameras, ensuring elevated performance across different domains. In electrical systems, thermal cameras allow for the early identification of faults, enabling proactive maintenance to mitigate risks. Additionally, by assessing structural integrity, thermal cameras can detect thermal and insulation inefficiencies, leading to improved energy efficiency.
This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
In this study , Iraqi Bentonite clay was used as a filler for polyvinyl chloride polymer. Bentonite clay was prepared as a powder for some certain particle size ,followed by calcinations process at (300,700,900) OC ,then milled and sieved. The selected sizes were D ~75 µm and D ~150. After that polyvinyl Al-Cohool solution prepared and used as a coated layer covered the Bentonite powder before applied as a filler ,followed by drying , milling and sieving for limited recommend sizes. polyvinyl chloride solutions were prepared and adding of modified Bentonite power at certain quantities were followed .Sheet of these variables on the mechanical and thermal properties of the prepared reinforced particular polyvinyl chloride composite
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show MoreIn the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was assumed to be kept at high temperature and concentration while the opposite wall was kept at low temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman– Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, and buoyancy ratio from -15 t
... Show MoreAlbizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreThe removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc
... Show MoreThis research was conduct to evaluate the cytotoxic effect of exotoxin A (ETA) produced by Pseudomonas aeruginosa on mice in comparison with (phosphate buffer saline (PBS) as a negative control. The effect of the toxin was measured by employing the cytogenetic analysis which included (the mitotic index (MI), chromosomal aberrations (CAs), micronucleus (MN) and sperm abnormalities) parameters. In order to specify the cytotoxic effect of the toxin, three doses of ETA (125, 250 and 500 ng/ml) were used. Results showed that ETA was found to cause a significant decrease in mitotic index (MI) percentage, while significant increase in micronucleus (MN), chromosomal aberrations (CAs) and sperm abnormalities parameters in compression with control wa
... Show MoreIn this study, the Earth's surface was studied in Razzaza Lake for 25 years, using remote sensing methods. Images of the satellites Landsat 5 (TM) and 8 (OLI) were used to study and determine the components of the land cover. The study covered the years 1995-2021 with an interval of 5 years, as this region is uninhabited, so the change in the land cover is slow. The land cover was divided into three main classes and seven subclasses and classified using the maximum likelihood classifier with the help of training sets collected to represent the classes that made up the land cover. The changes detected in the land cover were studied by considering 1995 as a reference year. It was found that there was a significant reduction in the water mass
... Show MoreGas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .