Preferred Language
Articles
/
PBh-hZgBVTCNdQwCIL5N
Defect Detection Using Thermography Camera Techniques: A review
...Show More Authors

Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect detection, including temperature analysis and image processing algorithms, are thoroughly presented. The factors contributing to the effectiveness of thermography cameras are explored, along with their advantages over traditional inspection methods. The literature review highlights the diverse applications of thermography cameras in fault detection. The review highlights the remarkable transformation brought by thermal camera technology in mechanical system fault detection, leading to improved maintenance practices. These cameras can detect unseen irregularities, enable non-invasive testing and support hands-on system maintenance, making them indispensable tools for ensuring mechanical systems operate efficiently, reliably and safely. With the continuous advancement of technology, the integration of Industry 4.0 and IoT technologies will further enhance the capabilities of thermal cameras, ensuring elevated performance across different domains. In electrical systems, thermal cameras allow for the early identification of faults, enabling proactive maintenance to mitigate risks. Additionally, by assessing structural integrity, thermal cameras can detect thermal and insulation inefficiencies, leading to improved energy efficiency.  

Crossref
View Publication
Publication Date
Tue Dec 07 2021
Journal Name
Tencon 2021 - 2021 Ieee Region 10 Conference (tencon)
Robust State Feedback Control of Electric Heating Furnace Using a New Disturbance Observer
...Show More Authors

As one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord

... Show More
View Publication
Scopus (4)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Digital-Based Optimal AVR Design of Synchronous Generator Exciter Using LQR Technique
...Show More Authors

In this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q,  this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster respo

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of a Power System Transient Stability Using Static Synchronous Series Compensator SSSC
...Show More Authors

Static Synchronous Series Compensator (SSSC) is a well known device for effectively regulating the active power flow in a power system. In this paper, the SSSC linearized power flow equations are incorporated into Newton-Raphson algorithm in a MATLAB written program to investigate the control of active poweer flow and the transient stability of a five bus and a thirty bus IEEE test systems, during abnormal conduction (three phase fault near buses). A comparison of the results obtained for the base case without SSSC and with it to investigate the effectiveness of the device on both of the active power flow and the transient stability.

View Publication Preview PDF
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Preparation of polyaniline polymer and using it as a Vapor sensor of acids
...Show More Authors

 Polyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor  H2SO4 and HCl  acids.

View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between robust methods in canonical correlation by using empirical influence function
...Show More Authors

       Canonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.

In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 17 2019
Journal Name
Iraqi Journal Of Physics
A Study of the electronic structure of CdS Nanocrystals using density functional theory
...Show More Authors

Density Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Industrial And Engineering Chemistry
Petroleum refinery wastewater treatment using a novel combined electro-Fenton and photocatalytic process
...Show More Authors

View Publication
Scopus (21)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Mechanical Science And Technology
Optimization of a rectangular pin fin using elliptical perforations with different inclination angles
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jan 31 2019
Journal Name
International Journal Of Ambient Energy
Energy generation by membraneless microfluidic fuel cell using acidic wastewater as a fuel
...Show More Authors

A simple and novel membraneless paper-based microfluidic fuel cell was presented in this study. The occurrence of laminar flow was employed to ensure no mixing of the fuel and oxidant fluids along the bath of reaction. The acidic wastewater was used as a fuel. It was an air-breathing cell, so air and tab water were used as oxidants. Both the fuel and tab water flowed continuously under gravity. Whatman filter paper was used for preparation of the fuel cell channel and two carbon fibre electrodes were used and firmed on the edges of the cell. The performance of the cell was examined over three consecutive days. The results indicated that the present cell has the potential to generate electric power, but an extensive study is required to harv

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jan 11 2018
Journal Name
Al-khwarizmi Engineering Journal
Control on a 2-D Wing Flutter Using an Adaptive Nonlinear Neural Controller
...Show More Authors

An adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th

... Show More
View Publication Preview PDF