Silicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their ability to establish anisotropic networks (fabrics) comprising strong-force transmitting inter-particle contacts under shear loading. Strong contacts pertain to the relatively small number of contacts carrying greater than the average normal contact force. However, information on how such fabrics evolve in Si-based assemblies under mechanical loading, and their link to bulk shear strength of such assemblies are scarce in the literature. Using discrete element method (DEM), here we present results on how Si-based granular assemblies develop shear strength and their internal fabric structures under bi-axial quasi-static compression loading. Based on the analysis, a simple constitutive relation is presented for the bulk shear strength of the Si-based assemblies relating with their internal fabric anisotropy of the heavily loaded contacts. These findings could help to develop structure-processing property relations of Si-based materials in future, which originate at the microscale.
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreBecause of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show More
The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra
... Show MoreIn this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreSeveral previous investigations and studies utilized silica fume (SF) or (micro silica) particles as supplementary cementitious material added as a substitute to cement-based mortars and their effect on the overall properties, especially on physical properties, strength properties, and mechanical properties. This study investigated the impact of the inclusion of silica fume (SF) particles on the residual compressive strengths and microstructure properties of cement-based mortars exposed to severe conditions of elevated temperatures. The prepared specimens were tested and subjected to 25, 250, 450, 600, and 900 °C. Their residual compressive strengths and microstructure were evaluated and compared with control samples (C
... Show More