Dam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (FE) model. This model was used to differentiate between the effect of turbine units’ operation on dam stability in accordance to maximum and minimum reservoir upstream water levels, and the varying flowrates in a fully open gate condition. In the second stage of the analysis, an ANSYS-static modeling approach was used to develop a 3-D FE earthfill dam model. The water pressure pattern determined on the boundary of the running turbine model is transformed into the pressure at the common area of the dam body with turbines. The model is inspected for maximum and minimum upstream water levels. Findings indicate that the water stress fluctuations on the dam body are proportional to the inverse distance from the turbine region. Also, it was found that the cone and outlet of the hydropower turbine system are the most affected regions when turbine is running. Based on the attained results, a systematic operation program was proposed in order to control the running hydropower plant with minimized principal stress at selected nodes on the dam model and the six turbines.
In this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.
... Show MoreThe aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
The synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
Fifteen local isolates of Pseudomonas were obtained from several sources such as soil, water and some high-fat foods (Meat, olives, coconuts, etc.). The ability of isolates to produce lipase was measured by the size of clear zone on Tween 20 solid medium and by measuring the enzymatic activity and specific activity. Isolate M3 (as named in this study) was found to be the most efficient for the production of the lipase with enzymatic activity reached 56.6 U/ml and specific activity of 305.94 U/mg. This isolate was identified through genetic analysis of the 16S rRNA gene. and it was shown that the isolate M3 belongs to Pseudomonas aeruginosa with 99% similarity. The DNA of isolate M3 was extracted and lipase gene was amplified through PCR tec
... Show MoreBackground: Congenital club foot is a complex deformity of foot .It is a collection of different abnormalities, with different etiologies. Consequently, Severity varies with difficulties in evaluating treatment strategies with outcome results. The treatment of congenital club foot remains controversial. Usually, the orthopedist's goal is to obtain anatomically and functionally normal feet in all patients. Objective: To asses short term follow up result of conservatively treated club feet in relation to the age
... Show MoreThe concept of education is not actually restricted to children or school students, but rather every person should be educated and followed up if he is intended to grow and prove, with effort and time allocation as to fulfill that goal. Thus , the current paper aims to a thinking education and to educate that thinking in teacher and it is not new to deal with the personal characteristics of teacher in the different scientific , and educational researches . But ,these research did not address the necessity of acquiring the skill of thinking, especially as it affects teacher's presentation of the content of the curriculum or even content outside the curriculum, and therefore, there is n
... Show MoreIn this paper, we have examined the effectiveness exchange of optical vorticity via three-wave mixing (TWM) technique in a four-level quantum dot (QD) molecule by means of the electron tunneling effect. Our analytical analysis demonstrates that the TWM procedure can result in the production of a new weak signal beam that may be absorbed or amplified within the QD molecule. We have taken into account the electron tunneling as well as the relative phase of the applied lights to assess the absorption and dispersion characteristics of the newly generated light. We have discovered that the slow light propagation and signal amplification can be achieved. Our results show that the exchange o
Micro-perforated panel (MPP) absorber is increasingly gaining popularity as an alternative sound absorber in buildings compared to the well-known synthetic porous materials. A single MPP has a typical feature of a Helmholtz resonator with a high amplitude of absorption but a narrow absorption frequency bandwidth. To improve the bandwidth, a single MPP can be cascaded with another single MPP to form a double-layer MPP. This paper proposes the introduction of inhomogeneous perforation in the double-layer MPP system (DL-iMPP) to enhance the absorption bandwidth of a double-layer MPP. Mathematical models are proposed using the equivalent electrical circuit model and are validated with experiments with good agreement. It is revealed that the DL-
... Show MoreThe ability of using aluminum filings which is locally solid waste was tested as a mono media in gravity rapid filter. The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 20and 30 NTU); flow rate(30, 40, and 60 l/hr) and bed height (30and60)cm on the performance of aluminum filings filter media for 5 hours run time and compare it with the conventional sand filter. The results indicated that aluminum filings filter showed better performance than sand filter in the removal of turbidity and in the reduction of head loss. Results showed that the statistical model developed by the multiple linear regression was proved to be
valid, and it could be used to predict head loss in aluminum filings
