<p>Daftardar Gejji and Hossein Jafari have proposed a new iterative method for solving many of the linear and nonlinear equations namely (DJM). This method proved already the effectiveness in solved many of the ordinary differential equations, partial differential equations and integral equations. The main aim from this paper is to propose the Daftardar-Jafari method (DJM) to solve the Duffing equations and to find the exact solution and numerical solutions. The proposed (DJM) is very effective and reliable, and the solution is obtained in the series form with easily computed components. The software used for the calculations in this study was MATHEMATICA<sup>®</sup> 9.0.</p>
The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth
... Show MoreIn this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces
Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.
Let be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever .
In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of
... Show MoreLet be a commutative ring with 1 and be left unitary . In this paper we introduced and studied concept of semi-small compressible module (a is said to be semi-small compressible module if can be embedded in every nonzero semi-small submodule of . Equivalently, is semi-small compressible module if there exists a monomorphism , , is said to be semi-small retractable module if , for every non-zero semi-small sub module in . Equivalently, is semi-small retractable if there exists a homomorphism whenever . In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible and retractable respectively and give some of their adv
... Show MoreThere are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in
... Show MoreThe techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show More