Preferred Language
Articles
/
PBbMQYcBVTCNdQwCfD73
Fatigue Characterization for Composite Materials used in Artificial Socket Prostheses with the Adding of Nanoparticles
...Show More Authors
Abstract<p>The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volume fractions for various types for Nano particle materials on the fatigue behavior for composite materials, and preparing the fatigue samples and tested using the fatigue apparatus. The Nano particles used were (Nano SiO<sub>2</sub> and Nano Al<sub>2</sub>O<sub>3</sub>) materials with volume fraction as (0% to 2%), for each type of Nano material used. The artificial neural network technique was adopted to have a verification for the experimental results and calculating the fatigue life and strength for composite materials, with the addition of nanoparticles and then, a comparison of the results was achieved. The comparison of the results indicate a maximum error between results calculated by two technique did not exceeded about (1%). Then, the results calculated showed that the mechanical properties and fatigue life and strength increase with reinforcement with Nano particle. Also, the results showed that the modified for fatigue limits with materials by (Nano SiO<sub>2</sub>) Nano particle was more than the modified for fatigue limits for materials reinforcement with other materials. Finally, it can be concluded that the modified for fatigue strength, by reinforcement with (Nano SiO<sub>2</sub>), leads to 60% more than fatigue limit without Nano additive.</p>
Scopus Crossref
View Publication
Publication Date
Mon Jul 01 2013
Journal Name
Ceramics International
Characterization of alumino-silicate glass/kaolinite composite
...Show More Authors

View Publication
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2010
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Mechanical Combined Contact Stress with Buckling Load on the Stress Distribution in the Ball and Socket Joint Mechanism
...Show More Authors

The design of components subjected to contact stress as local compressive stress is important in engineering application especially in ball and socket Joining.  Two kinds of contact stress are introduced in the ball and socket joint, the first is from normal contact while the other is from sliding contact. Although joining two long links (drive shaft in steering cars) will cause the effect of flexural and tensional buckling stress in hollow columns through the ball and socket ends on the failure condition of the joining mechanism. In this paper the consideration of the combined effect of buckling Load and contact stress on the ball and socket joints have been taken, epically on the stress distribution in the contact area. Different

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Studying the Effect of Volume Fraction of Glass Fibers on the Thermal Conductivity of the Polymer Composite Materials
...Show More Authors

In this study the effect of fiber volume fraction of the glass fiber on the thermal conductivity of the polymer composite material was studied. Different fiber volume fraction of glass fibers were used (3%, 6%, 9%, 12%, and 15%). Specimens were made from polyester which reinforced with glass fibers .The fibers had two arrangements according to the direction of the thermal flow. In the first arrangement the fibers were parallel to the direction of the thermal flow, while the second arrangement was perpendicular; Lee's disk method was used for testing the specimens. The experimental results proved that the values of the thermal conductivity of the specimens was higher when the fibers arranged in parallel direction than that when the fibers

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 27 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of in office bleaching on surface roughness and micro-hardness of newly developed composite materials (In vitro study)
...Show More Authors

Background: Alterations in the microhardness and roughness are commonly used to analyze the possible negative effects of bleaching products on restorative materials. This in vitro study evaluated the effect of in-office bleaching (SDI pola office +) on the surface roughness and micro-hardness of four newly developed composite materials (Z350XT –nano-filled, Z250XT-nano-hybrid, Z250-mico-hybrid and Silorane-silorane based). Materials and methods: Eighty circular samples with A3 shading were prepared by using Teflon mold 2mm thickness and 10mm in diameter. 20 samples for each material, 10 samples for base line measurement (surface roughness by using portable profillometer, and micro-hardness by usingDigital Micro Vickers Hardness Test

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
Study the Effect of Adding Aluminum Nanoparticles to a Smart Alloy (Cu-Al-Ni) on Hardness and Porosity
...Show More Authors

This work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Mechanical Properties Enhancement of Conventional Glass Ionomer Cement by Adding Zirconium Oxide Micro and Nanoparticles
...Show More Authors

The aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Wed Mar 28 2018
Journal Name
Iraqi Journal Of Science
Hybrid Approach of Prediction Daily Maximum and Minimum Air Temperature for Baghdad City by Used Artificial Neural Network and Simulated Annealing
...Show More Authors

     Temperature predicting is the utilization to forecast the condition of the temperature for an upcoming date for a given area. Temperature predictions are done by gathering quantitative data in regard to the current state of the atmosphere. In this study, a proposed hybrid method to predication the daily maximum and minimum air temperature of Baghdad city which combines standard backpropagation with simulated annealing (SA). Simulated Annealing Algorithm are used for weights optimization for recurrent multi-layer neural network system. Experimental tests had been implemented using the data of maximum and minimum air temperature for month of July of Baghdad city that got from local records of Iraqi Meteorological O

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 29 2022
Journal Name
Research Journal Of Pharmacy And Technology
Characterization and Testing the properties of PEKK- Strontium- hydroxyapatite composite material
...Show More Authors

Polymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength,

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Synthesis and Characterization of Tri-Composite Activated Carbon
...Show More Authors

Activated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Preparation and Characterization of γ-Al2O3/Al Composite
...Show More Authors

A cermet (ceramic-metal) composite have been prepared from alumina (γ-Al2O3) reinforced with aluminum (Al) for the concentrations of (0, 10, 20, 30, 40, & 50) wt. %Al. The cermet was formed by single axial pressing, sintered in vacuum atmosphere. Compaction behaviors were studied in solid state sintering at sintering temperatures (400, 450, & 550) °C, sintering times (2, 4, & 6) hrs., and forming pressures (5, 10, 15) MPa, also in liquid phase sintering at (800 °C). The cermet was characterized by x-ray diffraction (XRD) and by scanning electron microscope (SEM), also physical and mechanical properties have been studied. SEM results showed the Al flowing inside the ceramic body due to uniform distribution of Al particles a

... Show More
View Publication Preview PDF