The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volume fractions for various types for Nano particle materials on the fatigue behavior for composite materials, and preparing the fatigue samples and tested using the fatigue apparatus. The Nano particles used were (Nano SiO2 and Nano Al2O3) materials with volume fraction as (0% to 2%), for each type of Nano material used. The artificial neural network technique was adopted to have a verification for the experimental results and calculating the fatigue life and strength for composite materials, with the addition of nanoparticles and then, a comparison of the results was achieved. The comparison of the results indicate a maximum error between results calculated by two technique did not exceeded about (1%). Then, the results calculated showed that the mechanical properties and fatigue life and strength increase with reinforcement with Nano particle. Also, the results showed that the modified for fatigue limits with materials by (Nano SiO2) Nano particle was more than the modified for fatigue limits for materials reinforcement with other materials. Finally, it can be concluded that the modified for fatigue strength, by reinforcement with (Nano SiO2), leads to 60% more than fatigue limit without Nano additive.
This study aims to recognize the most common thinking styles and level of the need for cognitive university students , the relation between thinking styles and the need for cognitive, and there are differences according to gender .The sample consists of (250) males and females university students for the academic year (2013-2014), and the researcher uses two scales;" thinking styles scale (Harison &Bramson, 1986), and the need for cognitive scale" (Cacioppo, Petty & Kao , 1996).
The results show that there is difference in the range of the prevalence of the thinking styles among university students , the scientific thinking style is the most common , the students have got the arrange level of the need for cognitive , and there
New metal complexes of some transition metal ions [Fe(III) , Co(II) , Ni(II) and Cu(II)] of two previously prepared ligands HLI=(P-methyl anilino)- P-methoxy phenyl acetonitrile and HLII =(P-methoxy anilino)-P- methoxy phenyl acetonitrile were synthesized. The two ligands were prepared by Strecker's procedure which included the reaction of Pmethoxybenzaldehyde with p-toluidine and P-anisidine respectively. The structures of the new metal complexes were characterized by atomic absorption , i.r and U.V.-visible spectra . Magnetic susceptibilities and conductivity measurements in DMF of metal complexes were also studied. These ligands coordinate as abidentate molecules through nitrogen atoms of ï¡amino group and nitrile group except the
... Show MoreComputer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t
... Show MoreThis study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d
... Show More