A thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increased with increasing Cu content for AgCuInSe2 thin films. So the electrical conductivity changed from 1 (Ω.cm)-1 to 29.96 (Ω.cm)-1 when x changed from 0.0 to 0.2. The prepared thin films have two activation energies (Ea1 & Ea2) in the temperature ranges of (300-393) K and (303-473) K. The C-V measurements revealed that all prepared heterojunctions were of the abrupt type and the junction capacitance reduced while the width of depletion region and the built-in potential increased with increasing the Cooper content. The current-voltage characteristics under dark condition of AgCuInSe2 heterojunctions, the current-voltage measurements under illumination showed that the performance of heterojunction solar cell improved with increasing Cu content. The result indicated that the prepared solar cell with 0.2 Ag content exhibited the highest efficiency (η = 1.68%) compared to other prepared solar cells.
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
The effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decrea
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
Thin films of the blended solution of (NiPc/C60) on glass substrates were prepared by spin-coated method for three different ratios (100/1, 100/10 and 100/100). The effects of annealing temperature and C60 concentration on the optical properties of the samples were studied using the UV-Vis absorption spectroscopy and FTIR spectra. The optical absorption spectrum consists of two main bands, Q and B band, with maxima at about (602-632) nm and (700-730) nm for Q1 and Q2 respectively, and (340-375) nm for B band. The optical energy gap were determined from optical absorption spectra, The variation of optical energy gap with annealing temperature was nonsystematic and this may be due to the improvement in crystal structure for thin films. Whi
... Show MoreThin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
Thin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms
Optoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show MoreIn the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentratio
... Show More