Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, autocorrelation, and log energy. A modified version of fuzzy C-Means is then used to cluster speech segments into three clusters; two clusters for voice and one for unvoiced. After that, three feed forward neural networks are trained to adjust their weights, in which each network represents one cluster. To make the final decision regarding the class type of a given speech segment, the membership degrees of this segment in all clusters along with neural networks' decisions are given to a defuzzification step which finally gives the class type of that segment. The proposed FN-AVAD is tested on the public multimodal emotion database, Surrey AudioVisual Expressed Emotion (SAVEE), and the error rate was 2.08%. The achieved results are comparable to the results achieved by the current published works in the literature.
Neuro-ophthalmology, bridging neurology and ophthalmology, highlights the nervous system’s crucial role in vision, encompassing afferent and efferent pathways. The evolution of this field has emphasized the importance of neuroanatomy for precise surgical interventions, presenting educational challenges in blending complex anatomical knowledge with surgical skills. This review examines the interplay between neuroanatomy and surgical practices in neuro-ophthalmology, aiming to identify educational gaps and suggest improvements.
A literature search across databases such as PubMed, Scopus, and W
The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show MoreThis paper introduce two types of edge degrees (line degree and near line degree) and total edge degrees (total line degree and total near line degree) of an edge in a fuzzy semigraph, where a fuzzy semigraph is defined as (V, σ, μ, η) defined on a semigraph G* in which σ : V → [0, 1], μ : VxV → [0, 1] and η : X → [0, 1] satisfy the conditions that for all the vertices u, v in the vertex set, μ(u, v) ≤ σ(u) ᴧ σ(v) and η(e) = μ(u1, u2) ᴧ μ(u2, u3) ᴧ … ᴧ μ(un-1, un) ≤ σ(u1) ᴧ σ(un), if e = (u1, u2, …, un), n ≥ 2 is an edge in the semigraph G
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThe production companies in the Iraqi industry environment facing many of the problems related to the management of inventory and control In particular in determining the quantities inventory that should be hold it. Because these companies adoption on personal experience and some simple mathematical methods which lead to the identification of inappropriate quantities of inventory.
This research aims to identify the economic quantity of production and purchase for the Pepsi can 330ml and essential components in Baghdad soft drinks Company in an environment dominated by cases of non ensure and High fluctuating as a result of fluctuating demand volumes and costs ass
... Show MoreThe aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreRegistration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration p
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More