Automatic license plate recognition (ALPR) used for many applications especially in security applications, including border control. However, more accurate and language-independent techniques are still needed. This work provides a new approach to identifying Arabic license plates in different formats, colors, and even including English characters. Numbers, characters, and layouts with either 1-line or 2-line layouts are presented. For the test, we intend to use Iraqi license plates as there is a wide range of license plate styles written in Arabic, Kurdish, and English/Arabic languages, each different in style and color. This variety makes it difficult for recent traditional license plate recognition systems and algorithms to recognize all these license plate types using the same algorithm. In this work, a new method has been proposed to efficiently recognize all these types of license plates. This has been done by utilizing a series of algorithms for preprocessing and recognition with new identification strategies. The results show that the system recognized license plate numbers with higher accuracy, reaching up to 97.85%. However, the method field to detect license plates when there are some high deformations in plate numbers or when they are partially covered with mud, which makes it difficult to distinguish numbers.
This paper presents the dynamic responses of generators in a multi-machine power system. The fundamental swing equations for a multi-machine stability analysis are revisited. The swing equations are solved to investigate the influence of a three-phase fault on the network largest load bus. The Nigerian 330kV transmission network was used as a test case for the study. The time domain simulation approach was explored to determine if the system could withstand a 3-phase fault. The stability of the transmission network is estimated considering the dynamic behaviour of the system under various contingency conditions. This study identifies Egbin, Benin, Olorunsogo, Akangba, Sakete, Omotosho and Oshogbo as the key buses w
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the a
... Show MoreMB Mahmood, BN Dhannoon
Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that
... Show MoreFluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically
... Show MoreSummary:The anatomy of the arterial and venous vessels of the mammalian oviduct is well describedin women and in laboratory and farm animals. The arteries are derived from the ovarian anduterine stems; the relative contribution of these vessels, however, or variations in that contributionwith the menstrual or estrus cycle and/or gamete or embryo transport is unknown.
This paper presents a new approach to discover the effect of depth water for underwater visible light communications (UVLC). The quality of the optical link was investigated with varying water depth under coastal water types. The performance of the UVLC with multiple input–multiple output (MIMO) techniques was examined in terms of bit error rate (BER) and data rate. The theoretical result explains that there is a good performance for UVLC system under coastal water.
The increasing number of orphans and their organizations and institutes in our community makes it increasingly important to design and develop an expert system that supports decisions concerning orphans and their families. This system can be used by any orphans organization to facilitate its work.
The proposed work is designed to manage the Orphans and Families of Martyrs of Terrorism Expert System (OFMTES) by registry all information about all orphans to display mostly orphan deserves bill, data is entered for each orphan, and with each entry a counter is increased according to this input information; the output result represents the score for that orphan. Different orphans have different scores. Coloring is used to know the degree o
In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.