At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance penalty. Due to the massive calculations required by conventional public-key and secret encryption methods, information security in this limited context calls for light encryption techniques. In many applications involving sensor networks, security is a crucial concern. On the basis of traditional cryptography, a number of security procedures are created for wireless sensor networks. Some symmetric-key encryption techniques used in sensor network setups include AES, RC5, SkipJack, and XXTEA. These algorithms do, however, have several flaws of their own, including being susceptible to chosen-plaintext assault, brute force attack, and computational complexity.
Radioactive elements were identified in samples of imported coffee consumed in the province of Basra using gamma spectrometry SAM940TM. It is a scintillation detector of NaI(Tl) crystal and the dimensions of 2×2 inch. We have identified specific concentration As(Bq/kg) and annual effective dose D(Sv/y) for radioactive elements (_^40)K, (_^131)I, (_^134)Cs and (_^137)Cs. The estimated average effective dose for adults from coffee samples were found to be 0.037mSv/y, 88.434nSv/y, 46.909nSv/y, 27.212nSv/y for ((_^40)K,(_^131)I,(_^134)Cs,(_^137)Cs) respectively. The present results of the study revealed that the radioactivity was relatively low in the coffee and within the permissiblelimit.
Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses.
... Show MoreBusiness organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreIn this paper, we characterize the percolation condition for a continuum secondary cognitive radio network under the SINR model. We show that the well-established condition for continuum percolation does not hold true in the SINR regime. Thus, we find the condition under which a cognitive radio network percolates. We argue that due to the SINR requirements of the secondaries along with the interference tolerance of the primaries, not all the deployed secondary nodes necessarily contribute towards the percolation process- even though they might participate in the communication process. We model the invisibility of such nodes using the concept of Poisson thinning, both in the presence and absence of primaries. Invisibility occurs due to nodes
... Show MoreThis research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
With the spread of global markets for modern technical education and the diversity of programs for the requirements of the local and global market for information and communication technology, the universities began to race among themselves to earn their academic reputation. In addition, they want to enhance their technological development by developing IMT systems with integrated technology as the security and fastest response with the speed of providing the required service and sure information and linking it The network and using social networking programs with wireless networks which in turn is a driver of the emerging economies of technical education. All of these facilities opened the way to expand the number of students and s
... Show MorePrecision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More