At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance penalty. Due to the massive calculations required by conventional public-key and secret encryption methods, information security in this limited context calls for light encryption techniques. In many applications involving sensor networks, security is a crucial concern. On the basis of traditional cryptography, a number of security procedures are created for wireless sensor networks. Some symmetric-key encryption techniques used in sensor network setups include AES, RC5, SkipJack, and XXTEA. These algorithms do, however, have several flaws of their own, including being susceptible to chosen-plaintext assault, brute force attack, and computational complexity.
Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MorePVC membrane sensor for the selective determination of Mefenamic acid (MFA) was constructed. The sensor is based on ion association of MFA with Dodecaphospho molybdic acid (PMA) and Dodeca–Tungstophosphoric acid(PTA) as ion pairs. Nitro benzene (NB) and di-butyl phthalate (DBPH) were used as plasticizing agents in PVC matrix membranes. The specification of sensor based on PMA showed a linear response of a concentration range 1.0 × 10–2 –1.0 × 10–5 M, Nernstian slopes of 17.1-18.86 mV/ decade, detection limit of 7 × 10-5 -9.5 × 10 -7M, pH range 3 – 8 , with correlation coefficients lying between 0.9992 and 0.9976, respectively. By using the ionphore based on PTA gives a concentration range of 1.0 × 10–4 –1.0 × 10–5 M,
... Show MoreWith the recent growth of global populations, main roads in cities have witnessed an evident increase in the number of vehicles. This has led to unprecedented challenges for authorities in managing the traffic of ambulance vehicles to provide medical services in emergency cases. Despite the high technologies associated with medical tracks and advanced traffic management systems, there is still a current delay in ambulances’ attendance in times of emergency to provide patients with vital aid. Therefore, it is indispensable to introduce a new emergency service system that enables the ambulance to reach the patient in the least congested and shortest paths. However, designing an effici
Is to obtain competitive advantage legitimate objective pursued by all organizations to achieve, because they live today in environments of rapid change and dynamic in order to meet the demands of the customer changing as well as intense competition between the organizations, which requires them to get the location of competitive markets in order to do this will remain to do the building and strengthening competitive advantage to be able to achieve, but that this feature is not easy and is not only through the identification and use of a successful strategy for a competitive standard and then manage it successfully. Hence the research problem of determining the sources of differentiation strategy and its impact on the dimensions of compe
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
The current study showed that the plants were collected from 23 geographical locations in Brenaj, Wasit, Iraq. The region was characterized by a great diversity of wild plants spread densely in this region. The results were as follows: 32 families, 149 species. Asteraceae was the most widespread with 29 species from the group of dicotyledons, followed by the Fabaceae family (19) species, but there are 13 plant families, with one plant species recorded for each plant family. in Brenaj, Wasit included: Aizoaceae, Capparaceae, Convolvulaceae, Frankeniaceae, Molluginaceae, Papaveraceae, Phyllanthaceae, Primulaceae, Rutaceae, Rubiaceae, Verbenaceae, Zygophyllaceae, Urticaceae, while the plant family Poaceae was most widespread in genera and spec
... Show MoreThe regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show MoreIn this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show MoreArtificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show Moresensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show More