At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance penalty. Due to the massive calculations required by conventional public-key and secret encryption methods, information security in this limited context calls for light encryption techniques. In many applications involving sensor networks, security is a crucial concern. On the basis of traditional cryptography, a number of security procedures are created for wireless sensor networks. Some symmetric-key encryption techniques used in sensor network setups include AES, RC5, SkipJack, and XXTEA. These algorithms do, however, have several flaws of their own, including being susceptible to chosen-plaintext assault, brute force attack, and computational complexity.
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreThe system of accounting information role in the success of the economic unit, whether for-profit or non-purposeful, and through the availability of financial reports of information accounting for quality properties in the financial reports, which are the final product of all departments, sections and other parties, including help in strengthen the decisions of the administration and operations of Information economic Unity. The municipalities of economic units, non-profit, which is characterized by certain characteristics, including the multiplicity of activities (service, productivity, construction) and multiple sources of access to resources, so the accounting information system that seeks to provide decision makers with information o
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreSecurity reflects a permanent and complex movement that complies with international and societal needs and developments in all its dimensions, interactions and levels. To constitute a universal demand for all States, communities and individuals. The question of security is one of the most important motivations and motivations that govern the behavior, and even the objectives of those societies and States. These groups or individuals have always sought to avoid fear and harm, and to provide stability, safety and security. In the light of this, security studies have been among the important fields of study in the field of international and strategic relations. The field witnessed many theoretical efforts, from the traditional perspective,
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreOne of the artificial lightweight aggregates with a wide range of applications is Lightweight Expanded Clay Aggregate. Clay is utilized in the production of light aggregates. Using leftover clay from significant infrastructure development projects to manufacture lightweight aggregates has a favorable environmental impact. This research examines the expanded clay aggregate production process and the impact of processing parameters on its physical and mechanical qualities. It also looks at secondary components that can be used to improve the qualities of concrete with expanded clay aggregates. The effect of the quantity of expanded clay aggregate on the fresh, hardened, and durability qualities of concrete is also studied.
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide low bit error rates (BER) along with information security. The aim of such activity is to steal or distort the information being conveyed. Optical Wireless Systems (basically Free Space Optic Systems, FSO) are no exception to this trend. Thus, there is an urgent necessity to design techniques that can secure privileged information against unauthorized eavesdroppers while simultaneously protecting information against channel-induced perturbations and errors. Conventional cryptographic techniques are not designed
... Show MoreTransportability refers to the ease with which people, goods, or services may be transferred. When transportability is high, distance becomes less of a limitation for activities. Transportation networks are frequently represented by a set of locations and a set of links that indicate the connections between those places which is usually called network topology. Hence, each transmission network has a unique topology that distinguishes its structure. The most essential components of such a framework are the network architecture and the connection level. This research aims to demonstrate the efficiency of the road network in the Al-Karrada area which is located in the Baghdad city. The analysis based on a quantitative evaluation using graph th
... Show More<p>Vehicular ad-hoc networks (VANET) suffer from dynamic network environment and topological instability that caused by high mobility feature and varying vehicles density. Emerging 5G mobile technologies offer new opportunities to design improved VANET architecture for future intelligent transportation system. However, current software defined networking (SDN) based handover schemes face poor handover performance in VANET environment with notable issues in connection establishment and ongoing communication sessions. These poor connectivity and inflexibility challenges appear at high vehicles speed and high data rate services. Therefore, this paper proposes a flexible handover solution for VANET networks by integrating SDN and
... Show More