Preferred Language
Articles
/
OobdY4YBIXToZYALConE
Numerical Investigation of Natural Convection Heat Transfer in Partially Filled Porous Enclosure Subjected to Constant Heat
...Show More Authors

Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respectively. Numerically, COMSOL Multiphysics 5.5a® based on the Galerkin finite element method is used for solving the governing equations with depending Brinkman- Darcy extended mode for porous media region. The results show that, effects of increasing the Rayleigh number on the temperature profile besides the progressively increasing the average Nusselt number. Moreover, symmetrical distribution of local Nu along the bottom heated wall and it is be minimum at midpoint of bottom. Also, the heat transfer and fluid flow are affected by thickness of porous layer and are maximum at porous layer thickness (0.25L) which clearly observed with large heater size to be approximately (93%) for the average Nu. Generally, the heat transfer is enhanced for large Darcy number (8.852×10-4 ) and influenced by the convection regime improvement while it is mainly conduction mode for (Da1) for all Raleigh number with a little effect of convection when increase (Ra).

Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 14 2022
Journal Name
Physica Scripta
A wavelet-based collocation technique to find the discontinuous heat source in inverse heat conduction problems
...Show More Authors
Abstract<p>This paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe</p> ... Show More
View Publication
Scopus (16)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Study on Flow Characteristics and Heat Transfer Behavior Around Different Geometrical Corrugated Extended Surfaces
...Show More Authors

Abstract

The current study presents numerical investigation of the fluid (air) flow characteristics and convection heat transfer around different corrugated surfaces geometry in the low Reynolds number region (Re<1000). The geometries are included wavy, triangle, and rectangular. The effect of different geometry parameters such as aspect ratio and number of cycles per unit length on flow field characteristics and heat transfer was estimated and compared with each other. The computerized fluid dynamics package (ANSYS 14) is used to simulate the flow field and heat transfer, solve the governing equations, and extract the results. It is found that the turbulence intensity for rectangular extended surface was larg

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 26 2025
Journal Name
Iraqi Journal Of Science
UNSTEADY PRESSURE DROP AND HEAT TRANSFER OFMAGNETOHYDRODYNAMIC ANNULAR TWO-PHASE INRECTANGULAR CHANNEL
...Show More Authors

An annular two-phase, steady and unsteady, flow model in which a conductingfluid flow under the action of magnetic field is concavely. Two models arepresented, in the model one; the magnetic field is perpendicular to the long side ofthe channel, while in the model two is perpendicular to the short side. Also, westudy, to some extent the single-phase liquid flow.It is found that the motion and heat transfer equations are controlled by differentdimensionless parameters namely, Reynolds, Hartmann, Prandtl, and Poiseuilleparameters. The Laplace transform technique is used to solve each of the motion andheat transfer equations. The effects of each of dimensionless parameters upon thevelocity and heat transfer is analyzed.A comprehensive study fo

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Augmentation of Nanofluids Heat transfer in a Circular Tube with Baffled Winged Twisted Swirl Generator
...Show More Authors

This article introduces a numerical study on heat exchange and corrosion coefficients of Zinc–water nanofluid stream in a circular tube fitted with swirl generator utilizing CFD emulation. Different  forms of swirl generator which have the following properties of plain twisted tape (PTT) and baffle wings twisted tape (BTT) embeds with various ratio of twisting (y = 2.93, 3.91 and 4.89), baffle inclination angles (β = 0°, - 30° and 30) joined with 1%, 1.5% and 2% volume fraction of ZnO nanofluid were utilized for simulation. The results demonstrated that the heat and friction coefficients conducted by these two forms of vortex generator raised with Reynolds number, twist ratio and baffle inclination angles decreases. Likewise, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 02 2017
Journal Name
Al-khwarizmi Engineering Journal (alkej)
Augmentation of Nanofluids Heat transfer in a Circular Tube with Baffled Winged Twisted Swirl Generator
...Show More Authors

Publication Date
Wed Oct 31 2018
Journal Name
Heat Transfer-asian Research
Comparative study on heat transfer enhancement of nanofluids flow in ribs tube using CFD simulation
...Show More Authors

View Publication
Scopus (21)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Simulation of Heat Storage and Heat Regeneration in Phase Change Material
...Show More Authors

The present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Simulation of Free Convection from an Inclined Heated Thin Plate in a Square Enclosure
...Show More Authors

Simulation of free convection heat transfer in a square enclosure induced by heated thin plate is represented numerically. All  the enclosure walls have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved stream function, vorticity, and energy equations by finite difference method using explicit technique and Successive Over- Relaxation method. The study was performed for different values of Rayleigh number ranging from 103 to 105 for different angle position of heated thin plate(0°, 45°, 90°). Air was chosen as a working fluid (Pr = 0.71). Aspect ratio of center of plate to the parallel left wall A2

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental Investigation of Under Reamed Pile Subjected to Dynamic Loading in Sandy Soil
...Show More Authors
Abstract<p>This paper presents an experimental study between uniform pile and different types of under-reamed pile, single bulb. The under-reamed piles are piles with enlarged bases that are suitable to resist considerable movement of the ground, filed up ground, soft clay, and loose sand which have advantages to increase the soil strength, uplift capacity, and decrease the displacement. In the present study, there are experimental analyze to performance the suitable under-reamed type under sinusoidal load from vertical vibration (motor-oscillator was mounted directly on the pile cap. The main finding of this work is that the pile capacity increases with the ream and that all stress values of so</p> ... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of Mixed Convection in an Enclosure with a Cold Movable Top Wall and Hot Bottom Wall
...Show More Authors

 

Mixed convection heat transfer to air inside an enclosure is investigated experimentally. The bottom wall of the enclosure is maintained at higher temperature than that of the top wall which keeps in oscillation motion, whereas the left and right walls are well insulated. The differential temperature of the bottom and top walls changed several times in order to accurately characterize the temperature distribution over a considerable range of Richardson number. Adjustable aspect ratio box was built as a test rig to determine the effects of Richardson number and aspect ratio on the flow behavior of the air inside the enclosure. The flow fields and the average Nusselt number profiles were presented in this wo

... Show More
View Publication Preview PDF