Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respectively. Numerically, COMSOL Multiphysics 5.5a® based on the Galerkin finite element method is used for solving the governing equations with depending Brinkman- Darcy extended mode for porous media region. The results show that, effects of increasing the Rayleigh number on the temperature profile besides the progressively increasing the average Nusselt number. Moreover, symmetrical distribution of local Nu along the bottom heated wall and it is be minimum at midpoint of bottom. Also, the heat transfer and fluid flow are affected by thickness of porous layer and are maximum at porous layer thickness (0.25L) which clearly observed with large heater size to be approximately (93%) for the average Nu. Generally, the heat transfer is enhanced for large Darcy number (8.852×10-4 ) and influenced by the convection regime improvement while it is mainly conduction mode for (Da1) for all Raleigh number with a little effect of convection when increase (Ra).
The current study sheds light on the measurement and estimation of the radioactivity of radionuclides (238U, 226Ra, 232Th, and 40k) in natural waters of different regions of Nineveh Governorate in Iraq.15 samples were collected from different sources of natural waters, where gamma-ray spectroscopy was used using NaI)TI) sodium iodide detector to determine the concentration of radioactivity in the samples. According to the results, the radioactivity concentration in the tested water sample were ranged from 0.36 ± 0.04-1.57 ± 0.09with an average value of 0.69 ± 0.06 Bq/l for 238U, and 2.9 ± 0.02-0.88 ± 0.03 with an average value of 0.65 ± 0.03 Bq/l for 226Ra Bq/l
... Show MoreAn experimental and numerical study has been carried out to investigate the heat transfer by natural convection and radiation in a two dimensional annulus enclosure filled with porous media (glass beads) between two horizontal concentric cylinders. The outer cylinders are of (100, 82 and70mm) outside diameters and the inner cylinder of 27 mm outside diameter with (or without) annular fins attached to it. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at a low temperature inside a freezer. The experiments were carried out for an annulus filled with
glass beads at a range of modified Rayleigh number (4.9 ≤ Ra≤ 69), radiation
Theoretical and experimental investigations of the transient heat transfer parameters of constant heat flux source subjected to water flowing in the downward direction in closed channel are conducted. The power increase transient is ensured by step change increase in the heat source power. The theoretical investigation involved a mathematical modeling for axially symmetric, simultaneously developing laminar water flow in a vertical annulus. The mathematical model is based on one dimensional downward flow. The boundary conditions of the studied case are based on adiabatic outer wall, while the inner wall is subjected to a constant heat flux. The heat & mass balance equation derived for specified element of bulk water within the annulu
... Show MoreNumerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (= 2.93, 3.91 and 4.89) and different cut depth (= 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration
... Show MoreIn the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was assumed to be kept at high temperature and concentration while the opposite wall was kept at low temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman– Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, and buoyancy ratio from -15 t
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreThe transfer of chemical pollutants from bottled water into water due to heat, sunlight and poor storage is one of the most serious threats to human health around the world, the objective of this study was to estimate the pH value and the transport of heavy metals from plastic bottles to water, for this purpose, 30 bottles of water for 10 local brands were collected and divided into three groups, the first was left at room temperature 25°C, The second was placed in a heat oven at 25°C and the third in another oven at 50°C for two weeks. The results showed significant differences at (P<0.05) between water samples, pH value and concentrations of heavy metals (Sb, Pb, Ni, Cu, Cr, Cd and Fe) we
... Show More