Preferred Language
Articles
/
OobdY4YBIXToZYALConE
Numerical Investigation of Natural Convection Heat Transfer in Partially Filled Porous Enclosure Subjected to Constant Heat
...Show More Authors

Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respectively. Numerically, COMSOL Multiphysics 5.5a® based on the Galerkin finite element method is used for solving the governing equations with depending Brinkman- Darcy extended mode for porous media region. The results show that, effects of increasing the Rayleigh number on the temperature profile besides the progressively increasing the average Nusselt number. Moreover, symmetrical distribution of local Nu along the bottom heated wall and it is be minimum at midpoint of bottom. Also, the heat transfer and fluid flow are affected by thickness of porous layer and are maximum at porous layer thickness (0.25L) which clearly observed with large heater size to be approximately (93%) for the average Nu. Generally, the heat transfer is enhanced for large Darcy number (8.852×10-4 ) and influenced by the convection regime improvement while it is mainly conduction mode for (Da1) for all Raleigh number with a little effect of convection when increase (Ra).

Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Abstract

In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.

Key

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Convective Heat Transfer of Fluid Flowing Across a Vertical Plate
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jan 01 1990
Journal Name
Solar & Wind Technology
Use of passive heat transfer and fluorescence to improve performance of photovoltaic solar panels
...Show More Authors

View Publication
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Heat Transfer in Bubble Column Contactors with immersed Coiled Heater
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modified Grid Clustering Technique to Predict Heat Transfer Coefficient in a Duct of Arbitrary Cross Section Area
...Show More Authors

A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.

The method is utilized to predict

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 27 2025
Journal Name
Al-khwarizmi Engineering Journal
Numerical Analysis of Double Diffusive Laminar Natural Convection in a Right Angle Triangular Solar Collector
...Show More Authors

Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Parametric Study of Mixed Convective Radiative Heat Transfer in an Inclined Annulus
...Show More Authors

The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran

... Show More
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Conjugate Heat Transfer of Laminar Air Flow in Rectangular Mini Channel
...Show More Authors

Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 02 2023
Journal Name
Al-khwarizmi Engineering Journal (alkej)
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Parametric Study of Mixed Convective Radiative Heat Transfer in an Inclined Annulus
...Show More Authors

The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortr

... Show More
View Publication Preview PDF