Gold, silver and nickel used as electrodes in the fabrication of perovskite solar cell by using thermal evaporation deposition method with direct structure FTO\ TiO2\ MAPbI3\ spiro-MeOTAD\ metal electrode. The cell efficiency was compared between the electrodes material as a function of time to explaining the effect of these metals electrode on cell performance, X-ray diffraction pattern showed that the samples that contain gold and nickel do not contain a compound indicating the interaction of the metal with the components of the cell or the formation of a new compound, while in the cell containing silver it was found that silver iodide is formed after the passage of time. Under standard AM1.5 illumination, the device shows a power conversion efficiency of 4.42%, 3.50%, and 1.61% for Au, Ni and Ag electrodes respectively. Devices with Au and Ni give same behaviours where reduce efficiency after 7day to 20% but for Ag reduce efficiency to 80%. The results revealed that, Nickel can become the best choice as an electrode for the perovskite solar cell in terms of price and efficiency approach to gold.
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreMany pharmaceutical molecules have solubility problems that until yet consist a hurdle that restricts their use in the pharmaceutical preparations. Lacidipine (LCDP) is a calcium-channel blocker with low aqueous solubility and bioavailability.
Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the solubility problems of many drugs. LCDP was formulated as a NE utilizing triacetin as an oil phase, tween 80 and tween 60 as a surfactant and ethanol as a co-surfactant. Nine formulas were prepared, and different tests performed to ensure the stability of the NEs, such as thermodyna
... Show MoreIsradipine related to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is used to treat hypertension, angina pectoris, as well as Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, thus, oral bio-availability will be approximately15 to 24 %.
The aim of the study is preparing stable oral oil in water (o/w) nanoemulsion of isradipine to promote the colloidial dispersion of isradipine in the nano range, so that it may be absorded by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism (israpidi
... Show More: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show MoreThe Co(II), Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Proline ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using solubility, melting point, conductivity measurement ,. and determination the percentage of the metal in the complexes by flame(AAS).Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. Draw the proposed structure of the complexes using program , Chem. office 3D(2006). The ligands and there metal complexes were screened for their antimicrobial activity against four bacteria (gram + ve) and (gram -ve){Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus}.The proposed structure of the complexes using program , Chem office 3D(
... Show MoreThe Co(II), Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Proline) and Trimethoprim antibiotic were synthesized. The complexes were characterized using solubility, melting point, conductivity measurement ,. and determination the percentage of the metal in the complexes by flame(AAS).Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. Draw the proposed structure of the complexes using program , Chem. office 3D(2006). The ligands and there metal complexes were screened for their antimicrobial activity against four bacteria (gram + ve) and (gram-ve){Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus}.The proposed structure of the complexes using program , Chem office 3D(20
... Show MoreMixed ligand complexes of bivalent metal ions, viz ; M= Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)2(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C7H7NO2) and Trimethoprime (TMP) = (C14H18N4O3) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity (Λm ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [μeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).
The complexes of Schiff base of 4-aminoantipyrine and 1,10-phenanthroline with metal ions Mn (II), Cu (II), Ni (II) and Cd (II) were prepared in ethanolic solution, these complexes were characterized by Infrared , electronic spectra, molar conductance, Atomic Absorption ,microanalysis elemental and magnetic moment measurements. From these studies the tetrahedral geometry structure for the prepared complexes were suggested.The prepared ligand of 4-aminoantipyrine was characterized by using Gc-mass spectrometer .
Mixed ligand complexes of bivalent metal ions, viz ; M= Co(II),Ni(II),Cu(II), Zn(II), Cd (II), and Hg(II) of the composition [M(Anth)2(TMP)] in 1:2:1 molar ratio, (where . AnthrH= Anthranilic acid (C7H7NO2) and Trimethoprime (TMP) = (C14H18N4O3) have been synthesized and characterized by repeated melting point determination, Solubility, Molar conductivity (Λm ),determination the percentage of the metal (M%) in the complexes by (AAS), FT-IR, magnetic susceptibility measurements [µeff (BM)] and electronic spectral data. The two ligands and their metal complexes have been screened for their bacterial activity against selected microbial strains (Gram +ve) & (Gram -ve).