<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynamically and periodically by evaluating the set of attackers of the current node with its neighbors. We use dataset named CICDDoS2019 that contains on binary classes benign and DDoS. Performance has evaluated by applying data mining algorithms as well as applying the best features to discover potential attack classes.</span>
Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur
... Show MoreThe current research aims to identify the level of strategic orientation and its dimensions (vision, mission, goals, and values) in the Iraqi National Security Service (INSS). The researchers followed the descriptive analytical approach as one of the forms of analysis and organized scientific interpretation to describe a specific phenomenon or problem, adopting the form questionnaire being the main source in collecting data and preparing for this. Based on the program of the Statistical Package of Social Sciences (SPSS 26) to analyze the data and come up with the final research results to identify the opinions of the intended sample on the subject of research, and the questionnaire of (20) paragraphs included the search variable, and was
... Show MoreQuality of e-service is one of the critical factors that decide the success or failure of organizations. It may increase competitive advantages as well as enhance the relationships with the customers. Achieving high e-service quality and user satisfaction are challenging since they depend fundamentally on user perception and expectation which can be tricky at times. To date, there is no agreement as to what service quality is, and how it should be measured, whether it is a function of statistical measures of quality including physical defects or managerial judgment, or it is a function of customer perception about the services. This paper deep-dived the quality of e-services offered b
The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreIn this paper, we use concepts and results from percolation theory to investigate and characterize the effects of multi-channels on the connectivity of Dynamic Spectrum Access networks. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from-a phenomenon which we define as channel abundance. To cope with the existence of multi-channels, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocol, it becomes difficult for two nodes to agree on a common channel, thereby potentially remaining invisible to each other. We model this
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More