This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse represented by four vertical Francis turbines, foundation, and the upstream reservoir. Changing the upstream water table minimum and maximum water levels, standers earth gravity, fluid-solid interface, hydrostatic pressure, and the soil properties are considered. The dam model runs to cover all possibilities for turbines operating in accordance with the reservoir discharge ranges. In order to minimize stresses in the dam body and increase dam safety, this study optimizes the turbine operating system by integrating turbine and dam models.
The paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat
... Show MoreFlexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show MoreIn this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacemen
... Show MoreObjective: determine the effectiveness of an education program on youth's level of awareness towards
household waste control.
Methodology: A Quazi-experimental study was conducted. Non-probability (quota sample) of (80) young
persons is selected from Baghdad Governorate. They are divided into two equal groups of (40) subjects for the
study group which is exposed to the household waste control educational program. The remaining is the
control group which is not exposed to the educational program.
Results: The findings of the study indicated that youth of the study group have got benefits from the
implementation of the educational program towards household waste control and change has occurred to
their awareness tow
Direct field-orientation Control (DFOC) of induction motor drives without mechanical speed sensors at the motor shaft has the attractions of low cost and high reliability. To replace the sensor, information on the rotor speed and position are extracted from measured stator currents and from voltages at motor terminals. In this paper presents direct field-orientation control (DFOC) with two type of kalman filter (complete order and reduced order extended kalman filter) to estimate flux, speed, torque and position. Simulated results show how good performance for reduced order extended kalman filter over that of complete order extended kalman filter in tracking performance and reduced time of state estimation.
Objective(s): to determine the effectiveness of instruction intervention upon multipara women's practices to
control stress incontinence.
Methodology: A quasi-experimental study was carried out from (2nd) April, 2010 to 15th June, 2010. Nonprobability
(purposive sample) of (60) multiparous women was selected from Baghdad Teaching Hospital and AlElwia
Maternity Teaching Hospital in Baghdad city, the sample was divided into two groups (30) women were
considered as a study group, and another (30) were considered as the control group. An instructional intervention
was applied on the study group, while the intervention was not applied on control group. A questionnaire was
resolve as a tool of data collection to suit the p
Robot manipulator is a multi-input multi-output system with high complex nonlinear dynamics, requiring an advanced controller in order to track a specific trajectory. In this work, forward and inverse kinematics are presented based on Denavit Hartenberg notation to convert the end effector planned path from cartesian space to joint space and vice versa where a cubic spline interpolation is used for trajectory segments to ensure the continuity in velocity and acceleration. Also, the derived mathematical dynamic model is based on Eular Lagrange energy method to contain the effect of friction and disturbance torques beside the inertia and Coriolis effect. Two types of controller are applied ; the nonlinear computed torque control (CTC
... Show More