Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (= 2.93, 3.91 and 4.89) and different cut depth (= 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (= 2.93) and cut depth= 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.
In this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreThe ratio of draft tube to reactor diameters is of decisive importance for the operation behavior of air lift loop reactors. The influence of draft tube geometry was investigated with respect to oxygen mass transfer and mixing time. The diameter ratio was varied between 0.33 and 0.80. The measurements were performed in two loop reactors with liquid capacities of 11.775 and 26.49 liters using aqueous with solutions of different coalescence behavior. The results show that there is no single diameter ratio which would produce most favorable conditions for the two process parameters. With respect to the more important requirements of aerobic cultures, i.e high oxygen mass transfer and efficient mixing, a diameter ratio between 0.5 and 0.6 is
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile st
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
This study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show MoreThe objective of the study to develop an amorphous solid dispersion for poorly soluble raltegravir by hot melt extrusion (HME) technique. A novel solubility improving agent plasdone s630 was utilized. The HME raltegravir was formulated into tablet by direct compression method. The prepared tablets were assessed for all pre and post-compression parameters. The drug- excipients interaction was examined by FTIR and DSC. All formulas displayed complying with pharmacopoeial measures. The study reveals that formula prepared by utilizing drug and plasdone S630 at 1:1.5 proportion and span 20 at concentration about 30mg (trail-6) has given highest dissolution rate than contrasted with various formulas of raltegravir.
Keywor
... Show MoreOrthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show More