Increasing demands on producing environmentally friendly products are becoming a driving force for designing highly active catalysts. Thus, surfaces that efficiently catalyse the nitrogen reduction reactions are greatly sought in moderating air-pollutant emissions. This contribution aims to computationally investigate the hydrodenitrogenation (HDN) networks of pyridine over the γ-Mo2N(111) surface using a density functional theory (DFT) approach. Various adsorption configurations have been considered for the molecularly adsorbed pyridine. Findings indicate that pyridine can be adsorbed via side-on and end-on modes in six geometries in which one adsorption site is revealed to have the lowest adsorption energy (–45.3 kcal/mol). Over a nitrogen hollow site adsorption site, initial HDN steps proceed by the stepwise hydrogenation of pyridine into piperidine followed by the Langmuir–Hinshelwood mechanism. The obtained findings are the first to theoretically model the hydrogenation pathways of pyridine to form piperidine and then the hydrogenolysis of piperidine producing C5H12 and NH3 over metal nitride. These paved the way for further investigations to better understanding such an important nitrogen removal reactions.
This study investigated the bioethanol production from green algae Chlorella vulgaris depending on its carbohydrate-enriched biomass. Four different phosphorous concentrations were employed to stimulate bioethanol production from Chlorella vulgaris. The impact of various phosphorous values on Chlorella vulgaris growth rate as well as primary product (carbohydrate) were evaluated. High performance liquid chromatography was utilized in this work. The stationary phase was identified as day 14, 12, 10 and 6 in treatments 6, 4, 2 and g/L, respectively. The findings suggest that the treatment without phosphorous addition had the highest record of carbohydrate content (22.64% dry weight) as well as the highest bioethanol yield (20.66% dry weight).
... Show MoreThirteen morphometric characters of catfish
Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting
Toxoplasma gondiiis an obligate intracellular protozoan parasite of the phylum Apicomplexa, and toxoplasmosis is an important disease of both humans and economically important animals. With a limited array of drugs available there is a need to identify new therapeutic compounds. Aureobasidin A (AbA) is an antifungal that targets the essential inositol phosphorylceramide (IPC, sphingolipid) synthase in pathogenic fungi. This natural cyclic depsipeptide also inhibits
In individuals with type 2 diabetes mellitus (T2DM), the cannabinoid receptor 1 (CNR1) gene polymorphism has been linked to diabetic nephropathy (DN). Different renal disorders, including DN, have been found to alter cannabinoid (CB) receptor expression and activation. This cross-sectional study aimed to investigate the relationship between CNR1 rs1776966256 and rs1243008337 genetic variants and the risk of developing DN in Iraqi patients with T2DM. The study included 100 patients with T2DM, divided into two groups: 50 with DN and 50 without DN. Genotyping of CNR1 rs1776966256 and rs1243008337 polymorphisms was conducted using PCR in DN patients and control samples. The distribution of rs1776966256 and rs1243008337 genotypes and alleles bet
... Show More