Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.
Let A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
In this work, the study of corona domination in graphs is carried over which was initially proposed by G. Mahadevan et al. Let be a simple graph. A dominating set S of a graph is said to be a corona-dominating set if every vertex in is either a pendant vertex or a support vertex. The minimum cardinality among all corona-dominating sets is called the corona-domination number and is denoted by (i.e) . In this work, the exact value of the corona domination number for some specific types of graphs are given. Also, some results on the corona domination number for some classes of graphs are obtained and the method used in this paper is a well-known number theory concept with some modification this method can also be applied to obt
... Show MoreNo. Due to their apparently extreme optical to X-ray properties, Narrow Line Seyfert 1s (NLSy1s) have been considered a special class of active galactic nuclei (AGN). Here, we summarize observational results from different groups to conclude that none of the characteristics that are typically used to define the NLSy1s as a distinct group – from the, nowadays called, Broad Line Seyfert 1s (BLSy1s) – is unique, nor ubiquitous of these particular sources, but shared by the whole Type 1 AGN. Historically, the NLSy1s have been distinguished from the BLSy1s by the narrow width of the broad Hb emission line. The upper limit on the full width at half maximum of this line is 2000kms−1 for NLSy1s, while in BLSy1s it can be of several thousands
... Show MoreUsed in the study especially calibrated Erwa to determine the number of neighborhood or the Alayoshi number of bacteria in the count modeling and casting method dishes in addition to using the drop method yielded significant results for a match between the methods used ..
Tests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreThe main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.