In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
A non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re
... Show MoreConservative pipes conveying fluid such as pinned-pinned (p-p), clamped–pinned (c-p) pipes and clamped-clamped (c-c) lose their stability by buckling at certain critical fluid velocities. In order to experimentally evaluate these velocities, high flow-rate pumps that demand complicated fluid circuits must be used.
This paper studies a new experimental approach based on estimating the critical velocities from the measurement of several fundamental natural frequencies .In this approach low flow-rate pumps and simple fluid circuit can be used.
Experiments were carried out on two pipe models at three different boundary conditions. The results showed that the present approach is more accurate for est
... Show MoreThe research aims to: Preparing rehabilitative exercises with accompanying tools to rehabilitate those with shoulder dislocation. Knowing the effect of rehabilitative exercises and accompanying aids in improving the muscular strength and motor range of those with dislocations in the shoulder joint. The two researchers used the experimental design with the same experimental group with the pre and post tests, so the researcher chose a sample appropriate to the nature of his research problem, its goals and its hypotheses, as a sample of the injured was chosen to remove the shoulder joint, who completed the treatment, who were not practicing sports, and those who went to the Physiotherapy Center at Al-Was
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
This paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order  , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.