Purpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement. Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both. Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. Findings: The Mean Circular Error (MCE) criterion was used to compare the two models, leading to the conclusion that the Nadaraya-Watson (NW) circular model outperformed the parametric model in estimating the parameters of the circular regression model. Research, Practical & Social Implications: The recommendation emphasized using the Nadaraya-Watson nonparametric smoothing method to capture the nonlinearity in the data. Originality/value: The results indicated that the Nadaraya-Watson circular model (NW) outperformed the parametric model. Paper type Research paper.
This paper deals to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th
... Show MoreRegression Discontinuity (RD) means a study that exposes a definite group to the effect of a treatment. The uniqueness of this design lies in classifying the study population into two groups based on a specific threshold limit or regression point, and this point is determined in advance according to the terms of the study and its requirements. Thus , thinking was focused on finding a solution to the issue of workers retirement and trying to propose a scenario to attract the idea of granting an end-of-service reward to fill the gap ( discontinuity point) if it had not been granted. The regression discontinuity method has been used to study and to estimate the effect of the end -service reward on the cutoff of insured workers as well as t
... Show MoreOften times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie
... Show More
Faces of the individual in his life many stressful events, which includes expertise undesirable, and events may involve a lot of sources of tension and the risk factors and threats in all areas of life, and this would make the stressful events play a role in the genesis of many diseases physical.
The high blood pressure is one of the most Actual manifestations of mental stress in the present scale physical disorders which may frequently in men relative to women, which may be caused by spasms in the blood vessels.
The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreIn this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade
... Show MoreA multidimensional systolic arrays realization of LMS algorithm by a method of mapping regular algorithm onto processor array, are designed. They are based on appropriately selected 1-D systolic array filter that depends on the inner product sum systolic implementation. Various arrays may be derived that exhibit a regular arrangement of the cells (processors) and local interconnection pattern, which are important for VLSI implementation. It reduces latency time and increases the throughput rate in comparison to classical 1-D systolic arrays. The 3-D multilayered array consists of 2-D layers, which are connected with each other only by edges. Such arrays for LMS-based adaptive (FIR) filter may be opposed the fundamental requirements of fa
... Show MoreThe aim of the research is to examine the multiple intelligence test item selection based on Howard Gardner's MI model using the Generalized Partial Estimation Form, generalized intelligence. The researcher adopted the scale of multiple intelligences by Kardner, it consists of (102) items with eight sub-scales. The sample consisted of (550) students from Baghdad universities, Technology University, al-Mustansiriyah university, and Iraqi University for the academic year (2019/2020). It was verified assumptions theory response to a single (one-dimensional, local autonomy, the curve of individual characteristics, speed factor and application), and analysis of the data according to specimen partial appreciation of the generalized, and limits
... Show More